dc.creatorBorges, Ernesto Pinheiro
dc.creatorTirnakli, Ugur
dc.creatorBorges, Ernesto Pinheiro
dc.creatorTirnakli, Ugur
dc.date.accessioned2022-10-07T15:48:24Z
dc.date.available2022-10-07T15:48:24Z
dc.date.issued2004
dc.identifier0378-4371
dc.identifierhttp://www.repositorio.ufba.br/ri/handle/ri/7183
dc.identifierv. 340, n. 1-3
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4006004
dc.description.abstractThe sensitivity to initial conditions and relaxation dynamics of two-dimensional maps are analyzed at the edge of chaos, along the lines of nonextensive statistical mechanics. We verify the dual nature of the entropic index for the Henon map, one (qsen¡1) related to its sensitivity to initial condition properties, and the other, graining-dependent (qrel(W)¿1), related to its relaxation dynamics towards its stationary state attractor. We also corroborate a scaling law between these two indices, previously found for z-logistic maps. Finally, we perform a preliminary analysis of a linearized version of the Henon map (the smoothed Lozi map). We 1nd that the sensitivity properties of all these z-logistic, Henon and Lozi maps are the same, qsen=0:2445 : : :.
dc.languageen
dc.publisherElsevier
dc.sourcehttp://dx.doi.org/10.1016/j.physa.2004.04.011
dc.subjectNonextensive thermostatistics
dc.subjectDynamical systems
dc.subjectTwo-dimensional maps
dc.titleTwo-dimensional dissipative maps at chaos threshold:sensitivity to initial conditions and relaxation dynamics
dc.typeArtigo de Periódico


Este ítem pertenece a la siguiente institución