dc.contributorGonçalves, Luiz Marcos Garcia
dc.contributorhttp://lattes.cnpq.br/3935921595412420
dc.contributorhttp://lattes.cnpq.br/1562357566810393
dc.contributorSilveira, Luiz Felipe de Queiroz
dc.contributor02863206494
dc.contributorhttp://lattes.cnpq.br/4139452169580807
dc.contributorSouza, Pedro Thiago Valério de
dc.contributorCâmara, Tales Vinícius Rodrigues de Oliveira
dc.contributorhttp://lattes.cnpq.br/3240500979757259
dc.creatorCarvalho, Cassiano Perin de
dc.date.accessioned2022-04-05T20:12:46Z
dc.date.accessioned2022-10-06T14:25:49Z
dc.date.available2022-04-05T20:12:46Z
dc.date.available2022-10-06T14:25:49Z
dc.date.created2022-04-05T20:12:46Z
dc.date.issued2021-12-10
dc.identifierCARVALHO, Cassiano Perin de. Deep learning architecture for automatic modulation classification in time-varying fading and impulsive noise channels. 2021. 61f. Dissertação (Mestrado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2021.
dc.identifierhttps://repositorio.ufrn.br/handle/123456789/46806
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3977076
dc.description.abstractThe automatic modulation classification (AMC) allows identifying the kind of modulation of the received signal, being a key part of the development of cognitive radio devices that adapt the type of modulation to the characteristics of the communication environment. Several types of research on AMC have been done based on the analysis of the modulation signals and using its parameters for developing powerful feature descriptors to be used on this automatic classification. Recently, a new trend appears related to the use of architectures based on deep learning for this classification. Hence, in this work, we propose to use methods based on deep learning to classify the modulation type of a signal in an environment with doppler fading and impulsive noise. We studied and propose a model based on CNN that has shown to be comparable to the state-of-the-art methods.
dc.publisherUniversidade Federal do Rio Grande do Norte
dc.publisherBrasil
dc.publisherUFRN
dc.publisherPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
dc.rightsAcesso Aberto
dc.subjectAutomatic modulation classification
dc.subjectDeep learning
dc.subjectCyclostationary analysis
dc.titleDeep learning architecture for automatic modulation classification in time-varying fading and impulsive noise channels
dc.typemasterThesis


Este ítem pertenece a la siguiente institución