masterThesis
Adaptação de segundo nível como técnica de estimação de parâmetros e sua aplicação ao controle adaptativo por modelo de referência
Fecha
2018-01-31Registro en:
GUSHIKEN, Pedro Yochinori. Adaptação de segundo nível como técnica de estimação de parâmetros e sua aplicação ao controle adaptativo por modelo de referência. 2018. 145f. Dissertação (Mestrado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2018.
Autor
Gushiken, Pedro Yochinori
Resumen
In this dissertation we demonstrate the concept of second level adaptation as a parameter
estimation method based on multiple linear regression identification models for the
case of a plant of order unity, and the case of a plant of order n with single input and
output available for measurement (SISO). We propose a modified form of the adaptive
law for second level adaptation based on integration of transient information. In all cases
simulation studies show that the estimates reach their true values faster with second level
adaptation compared to individual identification models and that the proposed modification
is even faster and also smoother in this regard. We apply second level adaptation
based on linear regression identification models updated through the gradient method to
the problem of model reference adaptive control (MRAC) in the case of an order 1 plant
and the case of an order n and relative degree one SISO plant, in this case with normalized
gradient method. Simulation results show that the control signal generated with second
level adaptation yields better results of model reference tracking compared to individual
identification models. We also compare the indirect MRAC based on second level adaptation
to the variable structure model reference adaptive control (VS-MRAC) scheme.