doctoralThesis
Projeto de Sistemas Integrados de Propósito Geral Baseados em Redes em Chip Expandindo as Funcionalidades dos Roteadores para Execução de Operações: A plataforma IPNoSys
Fecha
2012-03-30Registro en:
ARAÚJO, Sílvio Roberto Fernandes de. Projeto de Sistemas Integrados de Propósito Geral Baseados em Redes em Chip Expandindo as Funcionalidades dos Roteadores para Execução de Operações: A plataforma IPNoSys. 2012. 210 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Rio Grande do Norte, Natal, 2012.
Autor
Araújo, Sílvio Roberto Fernandes de
Resumen
It bet on the next generation of computers as architecture with multiple processors and/or
multicore processors. In this sense there are challenges related to features interconnection, operating
frequency, the area on chip, power dissipation, performance and programmability. The mechanism of
interconnection and communication it was considered ideal for this type of architecture are the
networks-on-chip, due its scalability, reusability and intrinsic parallelism. The networks-on-chip
communication is accomplished by transmitting packets that carry data and instructions that
represent requests and responses between the processing elements interconnected by the network.
The transmission of packets is accomplished as in a pipeline between the routers in the network, from
source to destination of the communication, even allowing simultaneous communications between
pairs of different sources and destinations. From this fact, it is proposed to transform the entire
infrastructure communication of network-on-chip, using the routing mechanisms, arbitration and
storage, in a parallel processing system for high performance. In this proposal, the packages are
formed by instructions and data that represent the applications, which are executed on routers as
well as they are transmitted, using the pipeline and parallel communication transmissions. In
contrast, traditional processors are not used, but only single cores that control the access to memory.
An implementation of this idea is called IPNoSys (Integrated Processing NoC System), which has an
own programming model and a routing algorithm that guarantees the execution of all instructions in
the packets, preventing situations of deadlock, livelock and starvation. This architecture provides
mechanisms for input and output, interruption and operating system support. As proof of concept
was developed a programming environment and a simulator for this architecture in SystemC, which
allows configuration of various parameters and to obtain several results to evaluate it