dc.contributorBatista, Alex de Moura
dc.contributorBernardino, Adriano Thiago Lopes
dc.contributorVieira Filho, Luis Gonzaga
dc.creatorLeite, Ana Clara Gomes
dc.date.accessioned2022-08-03T11:27:35Z
dc.date.accessioned2022-10-06T13:46:56Z
dc.date.available2022-08-03T11:27:35Z
dc.date.available2022-10-06T13:46:56Z
dc.date.created2022-08-03T11:27:35Z
dc.date.issued2022-07-26
dc.identifierLEITE, Ana Clara Gomes. Uma introdução aos ideais primos e maximais. 2022. 31f. Trabalho de Conclusão de Curso (Licenciatura em Matemática) – Departamento de Ciências Exatas e Aplicadas, Centro de Ensino Superior do Seridó, Universidade Federal do Rio Grande do Norte, Caicó, 2022.
dc.identifierhttps://repositorio.ufrn.br/handle/123456789/48997
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3972744
dc.description.abstractThe present work has as target audience all students who have experience in number theory. Some concepts of commutative algebra will be presented in relation to number theory, more precisely, we will study prime ideals and maximal ideals, having as main results the following theorems: the intersection of all prime ideals, called the Nilradical of Z, is equal to zero, and the intersection of all maximal ideals, called the Radical of Jacobson of Z, is also equal to zero.
dc.publisherUniversidade Federal do Rio Grande do Norte
dc.publisherBrasil
dc.publisherUFRN
dc.publisherLicenciatura em Matemática
dc.publisherDepartamento de Ciências Exatas e Aplicadas
dc.subjectTeoria dos Números
dc.subjectÁlgebra Comutativa
dc.subjectIdeais Primos
dc.subjectIdeais Maximais
dc.subjectNumber Theory
dc.subjectCommutative Algebra
dc.subjectPrime Ideals
dc.subjectMaximal Ideals
dc.titleUma Introdução aos Ideais Primos e Maximais
dc.typebachelorThesis


Este ítem pertenece a la siguiente institución