dc.contributor | Batista, Alex de Moura | |
dc.contributor | Bernardino, Adriano Thiago Lopes | |
dc.contributor | Vieira Filho, Luis Gonzaga | |
dc.creator | Leite, Ana Clara Gomes | |
dc.date.accessioned | 2022-08-03T11:27:35Z | |
dc.date.accessioned | 2022-10-06T13:46:56Z | |
dc.date.available | 2022-08-03T11:27:35Z | |
dc.date.available | 2022-10-06T13:46:56Z | |
dc.date.created | 2022-08-03T11:27:35Z | |
dc.date.issued | 2022-07-26 | |
dc.identifier | LEITE, Ana Clara Gomes. Uma introdução aos ideais primos e maximais. 2022. 31f. Trabalho de Conclusão de Curso (Licenciatura em Matemática) – Departamento de Ciências Exatas e Aplicadas, Centro de Ensino Superior do Seridó, Universidade Federal do Rio Grande do Norte, Caicó, 2022. | |
dc.identifier | https://repositorio.ufrn.br/handle/123456789/48997 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3972744 | |
dc.description.abstract | The present work has as target audience all students who have experience in number theory. Some concepts of commutative algebra will be presented in relation to number theory, more precisely, we will study prime ideals and maximal ideals, having as main results the following theorems: the intersection of all prime ideals, called the Nilradical of Z, is equal to zero, and the intersection of all maximal ideals, called the Radical of Jacobson of Z, is also equal to zero. | |
dc.publisher | Universidade Federal do Rio Grande do Norte | |
dc.publisher | Brasil | |
dc.publisher | UFRN | |
dc.publisher | Licenciatura em Matemática | |
dc.publisher | Departamento de Ciências Exatas e Aplicadas | |
dc.subject | Teoria dos Números | |
dc.subject | Álgebra Comutativa | |
dc.subject | Ideais Primos | |
dc.subject | Ideais Maximais | |
dc.subject | Number Theory | |
dc.subject | Commutative Algebra | |
dc.subject | Prime Ideals | |
dc.subject | Maximal Ideals | |
dc.title | Uma Introdução aos Ideais Primos e Maximais | |
dc.type | bachelorThesis | |