bachelorThesis
Projeto aerotermodinâmico de um scramjet com admissão interna para velocidade correspondente a número de Mach 4,18
Fecha
2018-06-29Registro en:
FARIAS, João Lucas Correia Barbosa de. Projeto aerotermodinâmico de um scramjet com admissão interna para velocidade correspondente a número de Mach 4,18. 2018. 72 f. Trabalho de Conclusão de Curso (Graduação em Engenharia Mecânica) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2018.
Autor
Farias, João Lucas Correia Barbosa de
Resumen
The goal of this document is to develop the aerothermodynamic project, the analytical- theoretical analysis and the numerical-theorical simulation of an inward two-dimensional academic scramjet demonstrator using hydrogen gas (H2) as its fuel, operating at 6,2km altitude and speed of 4750km/h (Mach 4,18). This demonstrator is one of the new versions proposed in 2012 by the Advanced Studies Institute (IEAv) for the Aerospace Hypersonic Vehicle 14-X (VHA 14-X), idealized in 2007. The vehicle is divided in three main stages: compression, combustion and expansion. One-dimensional compressible flow applied to Navier-Stokes Equations provide the tools needed for quantifying, in an analytical-theoretical manner, the changes that occur during the interation between the air and the scramjet. Shock Wave theory is used for analysing compression, Rayleigh flow theory is used for analysing combustion and Prandtl-Meyer flow and Area Ratio theories are used for analysing the expansion process. Tables and graphs are generated with the goal of examining the changes in the aerothermodynamic properties along the flow. The numerical-theorical simulation has the goal of verifying the results obtained through analytical-theoretical analysis, including the models used and the assumptions made. By simulating the flow, it is possible to generate contour plots of the aerothermodynamic properties along the flow. Also, by analysing a single streamflow, it is possible to generate graphs that can be compared to those of the analytical-theoretical analysis. In order to evaluate the performance of the vehicle, the velocity at the entrance of the combustor is analysed to assure supersonic combustion as well as the velocity at the exit of the scramjet to ensure thrust generation.