dc.contributorMelo, Jorge Dantas de
dc.contributor
dc.contributorhttp://lattes.cnpq.br/8241420490601784
dc.contributor
dc.contributorhttp://lattes.cnpq.br/7325007451912598
dc.contributorDória Neto, Adrião Duarte
dc.contributor
dc.contributorhttp://lattes.cnpq.br/1987295209521433
dc.contributorMartins, Allan de Medeiros
dc.contributor
dc.contributorhttp://lattes.cnpq.br/4402694969508077
dc.contributorLima Júnior, Francisco Chagas de
dc.contributor
dc.creatorLima, Naiyan Hari Cândido
dc.date.accessioned2013-04-18
dc.date.accessioned2014-12-17T14:56:07Z
dc.date.accessioned2022-10-06T13:39:42Z
dc.date.available2013-04-18
dc.date.available2014-12-17T14:56:07Z
dc.date.available2022-10-06T13:39:42Z
dc.date.created2013-04-18
dc.date.created2014-12-17T14:56:07Z
dc.date.issued2012-08-13
dc.identifierLIMA, Naiyan Hari Cândido. Classificação de padrões através de um comitê de máquinas aprimorado por aprendizagem por reforço. 2012. 75 f. Dissertação (Mestrado em Automação e Sistemas; Engenharia de Computação; Telecomunicações) - Universidade Federal do Rio Grande do Norte, Natal, 2012.
dc.identifierhttps://repositorio.ufrn.br/jspui/handle/123456789/15449
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3971732
dc.description.abstractReinforcement learning is a machine learning technique that, although finding a large number of applications, maybe is yet to reach its full potential. One of the inadequately tested possibilities is the use of reinforcement learning in combination with other methods for the solution of pattern classification problems. It is well documented in the literature the problems that support vector machine ensembles face in terms of generalization capacity. Algorithms such as Adaboost do not deal appropriately with the imbalances that arise in those situations. Several alternatives have been proposed, with varying degrees of success. This dissertation presents a new approach to building committees of support vector machines. The presented algorithm combines Adaboost algorithm with a layer of reinforcement learning to adjust committee parameters in order to avoid that imbalances on the committee components affect the generalization performance of the final hypothesis. Comparisons were made with ensembles using and not using the reinforcement learning layer, testing benchmark data sets widely known in area of pattern classification
dc.publisherUniversidade Federal do Rio Grande do Norte
dc.publisherBR
dc.publisherUFRN
dc.publisherPrograma de Pós-Graduação em Engenharia Elétrica
dc.publisherAutomação e Sistemas; Engenharia de Computação; Telecomunicações
dc.rightsAcesso Aberto
dc.subjectAprendizado de máquina. Sistemas inteligentes. Classificação de padrões. Máquinas de comitê. Máquinas de vetor de suporte. Aprendizagem por reforço
dc.subjectMachine learning. Intelligent systems. Pattern classification. Committee machines. Support vector machines. Reinforcement learning
dc.titleClassificação de padrões através de um comitê de máquinas aprimorado por aprendizagem por reforço
dc.typemasterThesis


Este ítem pertenece a la siguiente institución