dc.contributorCohen, Nir
dc.contributor
dc.contributorhttp://lattes.cnpq.br/2812473739457321
dc.contributor
dc.contributorhttp://lattes.cnpq.br/7895700958229353
dc.contributorPereira, Edgar Silva
dc.contributor
dc.contributorhttp://lattes.cnpq.br/0470193971644313
dc.contributorTrevisan, Vilmar
dc.contributor
dc.contributorhttp://lattes.cnpq.br/0319183112661354
dc.creatorGrilo, Daniel de Souza
dc.date.accessioned2016-03-17T00:40:14Z
dc.date.accessioned2022-10-06T13:32:13Z
dc.date.available2016-03-17T00:40:14Z
dc.date.available2022-10-06T13:32:13Z
dc.date.created2016-03-17T00:40:14Z
dc.date.issued2015-06-12
dc.identifierGRILO, Daniel de Souza. Sobre a integração indefinida de funções racionais complexas: teoria e implementação de algoritmos racionais. 2015. 193f. Dissertação (Mestrado em Matemática Aplicada e Estatística) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2015.
dc.identifierhttps://repositorio.ufrn.br/jspui/handle/123456789/20055
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3970041
dc.description.abstractWe present indefinite integration algorithms for rational functions over subfields of the complex numbers, through an algebraic approach. We study the local algorithm of Bernoulli and rational algorithms for the class of functions in concern, namely, the algorithms of Hermite; Horowitz-Ostrogradsky; Rothstein-Trager and Lazard-Rioboo-Trager. We also study the algorithm of Rioboo for conversion of logarithms involving complex extensions into real arctangent functions, when these logarithms arise from the integration of rational functions with real coefficients. We conclude presenting pseudocodes and codes for implementation in the software Maxima concerning the algorithms studied in this work, as well as to algorithms for polynomial gcd computation; partial fraction decomposition; squarefree factorization; subresultant computation, among other side algorithms for the work. We also present the algorithm of Zeilberger-Almkvist for integration of hyperexpontential functions, as well as its pseudocode and code for Maxima. As an alternative for the algorithms of Rothstein-Trager and Lazard-Rioboo-Trager, we yet present a code for Benoulli’s algorithm for square-free denominators; and another for Czichowski’s algorithm, although this one is not studied in detail in the present work, due to the theoretical basis necessary to understand it, which is beyond this work’s scope. Several examples are provided in order to illustrate the working of the integration algorithms in this text
dc.languagepor
dc.publisherUniversidade Federal do Rio Grande do Norte
dc.publisherBrasil
dc.publisherUFRN
dc.publisherPROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA APLICADA E ESTATÍSTICA
dc.rightsAcesso Aberto
dc.subjectIntegração indefinida
dc.subjectFunções racionais
dc.subjectAlgoritmos
dc.titleSobre a integração indefinida de funções racionais complexas: teoria e implementação de algoritmos racionais
dc.typemasterThesis


Este ítem pertenece a la siguiente institución