dc.contributorLima Filho, Francisco Pinheiro
dc.contributor
dc.contributorhttp://lattes.cnpq.br/1711036898410191
dc.contributor
dc.contributorhttp://lattes.cnpq.br/9888320802954176
dc.contributorDória Neto, Adrião Duarte
dc.contributor
dc.contributorhttp://lattes.cnpq.br/1987295209521433
dc.contributorMartins, Ronaldo de Andrade
dc.contributor
dc.contributorhttp://lattes.cnpq.br/0978273656336966
dc.contributorFlorencio, Cláudio Pires
dc.contributor
dc.contributorhttp://lattes.cnpq.br/0006270502154615
dc.contributorSábadia, José Antônio Beltrão
dc.contributor
dc.contributorhttp://lattes.cnpq.br/0280662216554148
dc.creatorAraújo, Eduardo Henrique Silveira de
dc.date.accessioned2013-05-15
dc.date.accessioned2014-12-17T14:09:15Z
dc.date.accessioned2022-10-06T13:13:46Z
dc.date.available2013-05-15
dc.date.available2014-12-17T14:09:15Z
dc.date.available2022-10-06T13:13:46Z
dc.date.created2013-05-15
dc.date.created2014-12-17T14:09:15Z
dc.date.issued2013-01-25
dc.identifierARAÚJO, Eduardo Henrique Silveira de. Sistema inteligente para estimar a porosidade em sedimentos a partir da análise de sinais GPR. 2013. 143 f. Tese (Doutorado em Pesquisa e Desenvolvimento em Ciência e Engenharia de Petróleo) - Universidade Federal do Rio Grande do Norte, Natal, 2013.
dc.identifierhttps://repositorio.ufrn.br/jspui/handle/123456789/13023
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3965671
dc.description.abstractThis Thesis presents the elaboration of a methodological propose for the development of an intelligent system, able to automatically achieve the effective porosity, in sedimentary layers, from a data bank built with information from the Ground Penetrating Radar GPR. The intelligent system was built to model the relation between the porosity (response variable) and the electromagnetic attribute from the GPR (explicative variables). Using it, the porosity was estimated using the artificial neural network (Multilayer Perceptron MLP) and the multiple linear regression. The data from the response variable and from the explicative variables were achieved in laboratory and in GPR surveys outlined in controlled sites, on site and in laboratory. The proposed intelligent system has the capacity of estimating the porosity from any available data bank, which has the same variables used in this Thesis. The architecture of the neural network used can be modified according to the existing necessity, adapting to the available data bank. The use of the multiple linear regression model allowed the identification and quantification of the influence (level of effect) from each explicative variable in the estimation of the porosity. The proposed methodology can revolutionize the use of the GPR, not only for the imaging of the sedimentary geometry and faces, but mainly for the automatically achievement of the porosity one of the most important parameters for the characterization of reservoir rocks (from petroleum or water)
dc.publisherUniversidade Federal do Rio Grande do Norte
dc.publisherBR
dc.publisherUFRN
dc.publisherPrograma de Pós-Graduação em Ciência e Engenharia do Petróleo
dc.publisherPesquisa e Desenvolvimento em Ciência e Engenharia de Petróleo
dc.rightsAcesso Aberto
dc.subjectPorosidade. GPR. Sistema inteligente. Rede neural artificial
dc.subjectPorosity. GPR. Intelligent system. Artificial neural network
dc.titleSistema inteligente para estimar a porosidade em sedimentos a partir da análise de sinais GPR
dc.typedoctoralThesis


Este ítem pertenece a la siguiente institución