doctoralThesis
Entropias generalizadas: vínculos termodinâmicos da Terceira Lei
Fecha
2016-04-22Registro en:
BENTO, Eliângela Paulino. Entropias generalizadas: vínculos termodinâmicos da Terceira Lei. 2016. 97f. Tese (Doutorado em Física) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2016.
Autor
Bento, Eliângela Paulino
Resumen
Based on the third law of Thermodynamics we ask whether or not generalized
entropies satisfy this fundamental property. The third law states that the entropy approaches
zero as the temperature (in absolute scale) also approaches zero. However, the
entropy can vanish only at absolute zero temperature. In this context, we propose a direct
analytical procedure to test if the generalized entropy satisfies the third law, assuming
only very general assumptions for the entropy S and energy U of an arbitrary N-level
classical system. Mathematically, the method relies on exact calculation of the parameter
_ = dS=dU in terms of the microstate probabilities pi. Finally, we determine the relation
between the low entropy limit S ! 0 (or more generally Smin) and the low-temperature
limit _ ! +1. For comparison, we apply the method to the entropy Boltzmann (standard
model), and Kaniadakis Tsallis (generalized models). For the latter two, we illustrate the
power of the method by unveiling the ranges of their parameters for which the third law is
satisfied. For _-entropy, the values usually assumed in the literature to _ parameter obeys
the third law ( - 1 < _ < 1). However, for the q-entropy the same is not true. We show that
the q-entropy can vanish at nonzero temperature in certain ranges of q. These results and
their consequences are discussed in this thesis. As a concrete example, we consider the
paradigmatic one-dimensional Ising model, which is one of the most important models in
all of physics. Classically, the Ising model is solved in the canonical ensemble, but it can
also solved exactly in nonstandard ensembles using generalized entropies.