masterThesis
Utilização do problema das k-medianas como critério para o agrupamento de dados semi-supervisionado
Fecha
2016-12-12Registro en:
RANDEL, Rodrigo Alves. Utilização do problema das k-medianas como critério para o agrupamento de dados semi-supervisionado. 2016. 72f. Dissertação (Mestrado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2016.
Autor
Randel, Rodrigo Alves
Resumen
Clustering is a powerful tool for automated analysis of data. It addresses the following
general problem: given a set of entities, find subsets, or clusters, which are homogeneous
and/or well separated. The biggest challenge of data clustering is to find a criterion to
present good separation of data into homogeneous groups, so that these groups bring
useful information to the user. To solve this problem, it is suggested that the user can
provide a priori information about the data set. Clustering under this assumption is called
semi-supervised clustering. This work explores the semi-supervised clustering problem
using a new model: the data is clustered by solving the k-medians problem. Results shows
that this new approach was able to efficiently cluster the data in many different domains.