dc.contributorLisbôa, Ronai Machado
dc.contributorAraújo, Jõao Medeiros de
dc.contributorAnselmo, Dory Hélio Aires de Lima
dc.creatorSottolichio, André Felipe Cavalcanti Ferreira
dc.date.accessioned2017-12-19T18:38:14Z
dc.date.accessioned2021-09-29T13:01:29Z
dc.date.accessioned2022-10-06T13:01:04Z
dc.date.available2017-12-19T18:38:14Z
dc.date.available2021-09-29T13:01:29Z
dc.date.available2022-10-06T13:01:04Z
dc.date.created2017-12-19T18:38:14Z
dc.date.created2021-09-29T13:01:29Z
dc.date.issued2017-12-07
dc.identifierSOTTOLICHIO, André Felipe Cavalcanti Ferreira. Métodos numéricos para a solução da equação de Dirac potenciais de oscilador harmônico.61 f. Trabalho de Conclusão de Curso (Graduação em Física ) - Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal, 2017.
dc.identifierhttps://repositorio.ufrn.br/handle/123456789/40262
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3962625
dc.description.abstractThe Harmonic Oscillator (HO) is a system addressed in various areas of physics and with many applications in vasts fields of science. We present the equations of the HOs for the classical, quantum and relativistic cases and solve them analytically and numerically. To do so, we apply the Euler, Runge-Kutta and Numerov methods to solve the second-order differential equations (DOEs) of the oscillators, developing algorithms in C and Python programming languages for the numerical solutions, and utilizing the MATHEMATICA software for analytical solutions. We compare both results to test the effectiveness of these methods, concluding that the Numerov method is the most efficient. We use the relativistic harmonic oscillator (RHO) as a physical-mathematical model to study energy level degeneracy and wave functions for the limits of exact nuclear spin and pseudospin symmetries. Regarding the RHO energy eigenvalues, the maximum relative difference between the numerical and analytical calculations was approximately $0.1 \%$ for the ground state $n = 0$ and $ 2.0\%$ for the excited state $n = 5$. In addition, the numerically calculated wave functions were compatible with those obtained from the analytical functions, allowing us to reveal the exact degeneracy expected for the pairs of spin and pseudospin energy levels.
dc.publisherUniversidade Federal do Rio Grande do Norte
dc.publisherBrasil
dc.publisherUFRN
dc.publisherFísica Bacharelado
dc.rightsopenAccess
dc.subjectMétodos numéricos
dc.subjectNumerical method, Numerov, Relativistic harmonic oscillator, Pseudospin symmetry.
dc.subjectNumerov
dc.subjectNumerical method
dc.subjectOscilador harmônico relativístico
dc.subjectRelativistic harmonic oscillator
dc.subjectSimetria de pseudospin
dc.subjectPseudospin symmetry
dc.titleMétodos numéricos para a solução da equação de Dirac potenciais de oscilador harmônico
dc.typebachelorThesis


Este ítem pertenece a la siguiente institución