masterThesis
Arquiteturas eficientes para sensoriamento espectral e classificação automática de modulações usando características cicloestacionárias
Fecha
2014-06-28Registro en:
LIMA, Arthur Diego de Lira. Arquiteturas eficientes para sensoriamento espectral e
classificação automática de modulações usando características
cicloestacionárias. 2014. 92 f. Dissertação (Mestrado em Automação e Sistemas; Engenharia de Computação; Telecomunicações) - Universidade Federal do Rio Grande do Norte, Natal, 2014.
Autor
Lima, Arthur Diego de Lira
Resumen
The increasing demand for high performance wireless communication systems has
shown the inefficiency of the current model of fixed allocation of the radio spectrum. In
this context, cognitive radio appears as a more efficient alternative, by providing opportunistic
spectrum access, with the maximum bandwidth possible. To ensure these requirements,
it is necessary that the transmitter identify opportunities for transmission and the
receiver recognizes the parameters defined for the communication signal. The techniques
that use cyclostationary analysis can be applied to problems in either spectrum sensing and
modulation classification, even in low signal-to-noise ratio (SNR) environments. However,
despite the robustness, one of the main disadvantages of cyclostationarity is the high
computational cost for calculating its functions. This work proposes efficient architectures
for obtaining cyclostationary features to be employed in either spectrum sensing and automatic
modulation classification (AMC). In the context of spectrum sensing, a parallelized
algorithm for extracting cyclostationary features of communication signals is presented.
The performance of this features extractor parallelization is evaluated by speedup and
parallel eficiency metrics. The architecture for spectrum sensing is analyzed for several
configuration of false alarm probability, SNR levels and observation time for BPSK and
QPSK modulations. In the context of AMC, the reduced alpha-profile is proposed as as
a cyclostationary signature calculated for a reduced cyclic frequencies set. This signature
is validated by a modulation classification architecture based on pattern matching. The
architecture for AMC is investigated for correct classification rates of AM, BPSK, QPSK,
MSK and FSK modulations, considering several scenarios of observation length and SNR
levels. The numerical results of performance obtained in this work show the eficiency of
the proposed architectures