dc.contributorBarbosa, Euzebio Guimarães
dc.contributorhttp://lattes.cnpq.br/3101465081133198
dc.contributorhttp://lattes.cnpq.br/3197108792266393
dc.contributorMartins, Rand Randall
dc.contributor02263563458
dc.contributorhttp://lattes.cnpq.br/8062199269259772
dc.contributorCanuto, Anne Magaly de Paula
dc.contributorhttp://lattes.cnpq.br/1357887401899097
dc.contributorOliveira, Yonara Monique da Costa
dc.contributorhttp://lattes.cnpq.br/7877043354904559
dc.creatorNascimento, Amanda Roseane Farias do
dc.date.accessioned2022-04-08T00:01:56Z
dc.date.accessioned2022-10-06T12:58:51Z
dc.date.available2022-04-08T00:01:56Z
dc.date.available2022-10-06T12:58:51Z
dc.date.created2022-04-08T00:01:56Z
dc.date.issued2022-01-31
dc.identifierNASCIMENTO, Amanda Roseane Farias do. Machine learning para predição de reação adversa ao medicamento: aplicação a neonatos em terapia intensiva. 2022. 37f. Dissertação (Mestrado em Ciências Farmacêuticas) - Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, 2022.
dc.identifierhttps://repositorio.ufrn.br/handle/123456789/46841
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3962089
dc.description.abstractIntroduction: The intensive care of newborns is associated with a large volume of data in their medical records. The processing of these data can be done through Machine Learning: the ability to improve the performance of some task through experience and, thus, assist in the detection and decision-making a tool capable of assisting in the detection and decision-making of a wide range of medical conditions, including adverse drug reactions (ADR). Purpose: Train prediction model to help detect adverse drug reactions in neonates admitted to an intensive care unit (ICU). Methods: observational study developed in the Neonatal Intensive Care Unit of a teaching hospital in Brazil. Clinical data were collected from the daily pharmacotherapeutic follow-up, processed and analyzed by machine learning through libraries written in Python language. Results: Eight hundred and three newborns were included in the study, with a mean gestational age of 32.2 ± 4.2 weeks and a mean birth weight of 1807.2 ± 936.6g. The incidence of ADR was 10.8%. Antimicrobials, especially aminoglycosides, were the most prescribed drugs in this population. An algorithm was trained and tested in the prediction of ADR in NICU, whose metrics were precision (0.35) and recall (0.823), with specificity (80%) and sensitivity (67%). Conclusion: There is a high potential in the machine learning method for predicting ADR in newborns admitted to an ICU.
dc.publisherUniversidade Federal do Rio Grande do Norte
dc.publisherBrasil
dc.publisherUFRN
dc.publisherPROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS FARMACÊUTICAS
dc.rightsAcesso Aberto
dc.subjectMedicamento - reações adversas
dc.subjectReação adversa ao medicamento
dc.subjectNeonato - tratamento intensivo
dc.subjectMachine Learning
dc.titleMachine learning para predição de reação adversa ao medicamento: aplicação a neonatos em terapia intensiva
dc.typemasterThesis


Este ítem pertenece a la siguiente institución