dc.contributorCarvalho, Bruno Motta de
dc.contributor
dc.contributorhttp://lattes.cnpq.br/7856195246084546
dc.contributor
dc.contributorhttp://lattes.cnpq.br/0330924133337698
dc.contributorAraújo, Daniel Sabino Amorim de
dc.contributor
dc.contributorhttp://lattes.cnpq.br/4744754780165354
dc.contributorMedeiros Neto, Francisco Dantas de
dc.contributor
dc.contributorhttp://lattes.cnpq.br/5525562330158282
dc.contributorAquino Júnior, Gibeon Soares de
dc.contributor
dc.contributorhttp://lattes.cnpq.br/1254338144161360
dc.creatorSilva, Iaslan do Nascimento Paulo da
dc.date.accessioned2021-04-06T18:55:11Z
dc.date.accessioned2022-10-06T12:57:57Z
dc.date.available2021-04-06T18:55:11Z
dc.date.available2022-10-06T12:57:57Z
dc.date.created2021-04-06T18:55:11Z
dc.date.issued2020-12-21
dc.identifierSILVA, Iaslan do Nascimento Paulo da. Arquitetura de microsserviços para processamento de imagens relevantes em evidências de crimes digitais. 2020. 81f. Dissertação (Mestrado em Sistemas e Computação) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2020.
dc.identifierhttps://repositorio.ufrn.br/handle/123456789/32051
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3961843
dc.description.abstractDigital forensics is a branch of computer science that uses computational techniques to analyze criminal evidence with greater speed and accuracy. In the context of the Brazilian justice system, during a criminal investigation, forensic specialists extract, decode, and analyze the evidence collected to allow the prosecutor to make legal demands for a prosecution. These experts have a very short time to analyze to find criminal evidence can take a long time. To solve this problem, this paper proposes ARTEMIS (A micRoservice archiTecturE for imagesin criMe evIdenceS or Microservice Architecture for images in criminal evidence) an architecture for classifying large amounts of image files present in evidence using open-source software. The image classification module contains some pre-trained classifiers, considering the need of forenses analysts from the MPRN (Rio Grande do Norte Public Ministry). Models were built to identify specific types of objects with for example: firearms, ammunition, Brazilian ID cards, text documents, cell phone screen captures enudez. The results obtained show that the system obtained good precision in most cases. This is extremely important in the context of this research, where false positives should be avoided in order to save analysts’ work time. In addition, the proposed architecture was able to accelerate the process of evidence analysis.
dc.publisherUniversidade Federal do Rio Grande do Norte
dc.publisherBrasil
dc.publisherUFRN
dc.publisherPROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃO
dc.rightsAcesso Aberto
dc.subjectVisão computacional
dc.subjectForense digital
dc.subjectEvidência criminal
dc.subjectAprendizado de máquina
dc.subjectArquitetura
dc.titleArquitetura de microsserviços para processamento de imagens relevantes em evidências de crimes digitais
dc.typemasterThesis


Este ítem pertenece a la siguiente institución