dc.contributor | Santana, Fagner Lemos de | |
dc.contributor | | |
dc.contributor | | |
dc.contributor | Lima, Annaxsuel Araújo de | |
dc.contributor | | |
dc.contributor | Pimentel, Elaine Gouvea | |
dc.contributor | | |
dc.contributor | Salles, Mário Otávio | |
dc.contributor | | |
dc.creator | Nascimento, Bismark Gonçalves do | |
dc.date.accessioned | 2020-05-06T18:31:05Z | |
dc.date.accessioned | 2022-10-06T12:54:40Z | |
dc.date.available | 2020-05-06T18:31:05Z | |
dc.date.available | 2022-10-06T12:54:40Z | |
dc.date.created | 2020-05-06T18:31:05Z | |
dc.date.issued | 2020-03-02 | |
dc.identifier | NASCIMENTO, Bismark Gonçalves do. Metrizabilidade de topologias e distâncias generalizadas. 2020. 85f. Dissertação (Mestrado em Matemática Aplicada e Estatística) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2020. | |
dc.identifier | https://repositorio.ufrn.br/jspui/handle/123456789/28928 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3960998 | |
dc.description.abstract | In this work, we present a study on the metrizability of topologies presenting the necessary
conditions for a topology to be metrizable, i.e., it can be constructed starting from a
metric originating from open balls. In addition, several interesting examples of topologies
are presented to show that many of the presented are only necessary. Moreover, the
Nagata-Smirnov Bing theorem is also mentioned, which presents necessary and sufficient
conditions for a topology to be metrizable. In addition, we present a generalization of
the concept of metric, which is called V-valued i-metric. Through this generalization we
define the concepts of V-valued i-quasi-metric, V-valued i-pseudometric and V-valued iquasipseudometric and it is proved that every topology is i-quasi-pseudometrizable. Based
on the theory of interval math an interval metric is constructed which is a particular case
of i-metric. This interval metric also generates a topology and we assess whether this
topology is metrizable. | |
dc.publisher | Brasil | |
dc.publisher | UFRN | |
dc.publisher | PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA APLICADA E ESTATÍSTICA | |
dc.rights | Acesso Aberto | |
dc.subject | Topologia metrizável | |
dc.subject | i-Métrica V-Valorada | |
dc.subject | Topologia i-Quasi-Pseudome-trizável | |
dc.subject | Métrica intervalar | |
dc.title | Metrizabilidade de topologias e distâncias generalizadas | |
dc.type | masterThesis | |