dc.contributorSantana, Fagner Lemos de
dc.contributor
dc.contributor
dc.contributorLima, Annaxsuel Araújo de
dc.contributor
dc.contributorPimentel, Elaine Gouvea
dc.contributor
dc.contributorSalles, Mário Otávio
dc.contributor
dc.creatorNascimento, Bismark Gonçalves do
dc.date.accessioned2020-05-06T18:31:05Z
dc.date.accessioned2022-10-06T12:54:40Z
dc.date.available2020-05-06T18:31:05Z
dc.date.available2022-10-06T12:54:40Z
dc.date.created2020-05-06T18:31:05Z
dc.date.issued2020-03-02
dc.identifierNASCIMENTO, Bismark Gonçalves do. Metrizabilidade de topologias e distâncias generalizadas. 2020. 85f. Dissertação (Mestrado em Matemática Aplicada e Estatística) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2020.
dc.identifierhttps://repositorio.ufrn.br/jspui/handle/123456789/28928
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3960998
dc.description.abstractIn this work, we present a study on the metrizability of topologies presenting the necessary conditions for a topology to be metrizable, i.e., it can be constructed starting from a metric originating from open balls. In addition, several interesting examples of topologies are presented to show that many of the presented are only necessary. Moreover, the Nagata-Smirnov Bing theorem is also mentioned, which presents necessary and sufficient conditions for a topology to be metrizable. In addition, we present a generalization of the concept of metric, which is called V-valued i-metric. Through this generalization we define the concepts of V-valued i-quasi-metric, V-valued i-pseudometric and V-valued iquasipseudometric and it is proved that every topology is i-quasi-pseudometrizable. Based on the theory of interval math an interval metric is constructed which is a particular case of i-metric. This interval metric also generates a topology and we assess whether this topology is metrizable.
dc.publisherBrasil
dc.publisherUFRN
dc.publisherPROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA APLICADA E ESTATÍSTICA
dc.rightsAcesso Aberto
dc.subjectTopologia metrizável
dc.subjecti-Métrica V-Valorada
dc.subjectTopologia i-Quasi-Pseudome-trizável
dc.subjectMétrica intervalar
dc.titleMetrizabilidade de topologias e distâncias generalizadas
dc.typemasterThesis


Este ítem pertenece a la siguiente institución