doctoralThesis
Análise e projeto de superfícies seletivas de frequência com elementos pré-fractais para aplicações em comunicações indoor
Fecha
2013-04-09Registro en:
NÓBREGA, Clarissa de Lucena. Análise e projeto de superfícies seletivas de frequência com elementos pré-fractais para aplicações em comunicações indoor. 2013. 146 f. Tese (Doutorado em Automação e Sistemas; Engenharia de Computação; Telecomunicações) - Universidade Federal do Rio Grande do Norte, Natal, 2013.
Autor
Nóbrega, Clarissa de Lucena
Resumen
In this thesis, a frequency selective surface (FSS) consists of a two-dimensional
periodic structure mounted on a dielectric substrate, which is capable of selecting signals in
one or more frequency bands of interest. In search of better performance, more compact
dimensions, low cost manufacturing, among other characteristics, these periodic structures
have been continually optimized over time. Due to its spectral characteristics, which are
similar to band-stop or band-pass filters, the FSSs have been studied and used in several
applications for more than four decades. The design of an FSS with a periodic structure
composed by pre-fractal elements facilitates the tuning of these spatial filters and the
adjustment of its electromagnetic parameters, enabling a compact design which generally has
a stable frequency response and superior performance relative to its euclidean counterpart.
The unique properties of geometric fractals have shown to be useful, mainly in the production
of antennas and frequency selective surfaces, enabling innovative solutions and commercial
applications in microwave range. In recent applications, the FSSs modify the indoor
propagation environments (emerging concept called wireless building ). In this context, the
use of pre-fractal elements has also shown promising results, allowing a more effective
filtering of more than one frequency band with a single-layer structure. This thesis approaches
the design of FSSs using pre-fractal elements based on Vicsek, Peano and teragons
geometries, which act as band-stop spatial filters. The transmission properties of the periodic
surfaces are analyzed to design compact and efficient devices with stable frequency
responses, applicable to microwave frequency range and suitable for use in indoor
communications. The results are discussed in terms of the electromagnetic effect resulting
from the variation of parameters such as: fractal iteration number (or fractal level), scale
factor, fractal dimension and periodicity of FSS, according the pre-fractal element applied on
the surface. The analysis of the fractal dimension s influence on the resonant properties of a
FSS is a new contribution in relation to researches about microwave devices that use fractal
geometry. Due to its own characteristics and the geometric shape of the Peano pre-fractal
elements, the reconfiguration possibility of these structures is also investigated and discussed. This thesis also approaches, the construction of efficient selective filters with new
configurations of teragons pre-fractal patches, proposed to control the WLAN coverage in
indoor environments by rejecting the signals in the bands of 2.4~2.5 GHz (IEEE 802.11 b)
and 5.0~6.0 GHz (IEEE 802.11a). The FSSs are initially analyzed through simulations
performed by commercial software s: Ansoft DesignerTM and HFSSTM. The fractal design
methodology is validated by experimental characterization of the built prototypes, using
alternatively, different measurement setups, with commercial horn antennas and microstrip
monopoles fabricated for low cost measurements