dc.contributor | Dória Neto, Adrião Duarte | |
dc.contributor | | |
dc.contributor | http://lattes.cnpq.br/3020236775004881 | |
dc.contributor | | |
dc.contributor | http://lattes.cnpq.br/1987295209521433 | |
dc.contributor | Canuto, Anne Magaly de Paula | |
dc.contributor | | |
dc.contributor | http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4790093J8 | |
dc.contributor | Melo, Jorge Dantas de | |
dc.contributor | | |
dc.contributor | http://lattes.cnpq.br/7325007451912598 | |
dc.contributor | Ludermir, Teresa Bernarda | |
dc.contributor | | |
dc.contributor | http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4781122D6 | |
dc.creator | Padilha, Carlos Alberto de Araújo | |
dc.date.accessioned | 2013-08-20 | |
dc.date.accessioned | 2014-12-17T14:56:13Z | |
dc.date.accessioned | 2022-10-06T12:40:31Z | |
dc.date.available | 2013-08-20 | |
dc.date.available | 2014-12-17T14:56:13Z | |
dc.date.available | 2022-10-06T12:40:31Z | |
dc.date.created | 2013-08-20 | |
dc.date.created | 2014-12-17T14:56:13Z | |
dc.date.issued | 2013-01-31 | |
dc.identifier | PADILHA, Carlos Alberto de Araújo. Algoritmos genéticos aplicados a um comitê de LS-SVM em problemas de classificação. 2013. 69 f. Dissertação (Mestrado em Automação e Sistemas; Engenharia de Computação; Telecomunicações) - Universidade Federal do Rio Grande do Norte, Natal, 2013. | |
dc.identifier | https://repositorio.ufrn.br/jspui/handle/123456789/15472 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3956954 | |
dc.description.abstract | The pattern classification is one of the machine learning subareas that has the most
outstanding. Among the various approaches to solve pattern classification problems, the
Support Vector Machines (SVM) receive great emphasis, due to its ease of use and good
generalization performance. The Least Squares formulation of SVM (LS-SVM) finds the
solution by solving a set of linear equations instead of quadratic programming implemented
in SVM. The LS-SVMs provide some free parameters that have to be correctly
chosen to achieve satisfactory results in a given task. Despite the LS-SVMs having high
performance, lots of tools have been developed to improve them, mainly the development
of new classifying methods and the employment of ensembles, in other words, a combination
of several classifiers. In this work, our proposal is to use an ensemble and a Genetic
Algorithm (GA), search algorithm based on the evolution of species, to enhance the LSSVM
classification. In the construction of this ensemble, we use a random selection of
attributes of the original problem, which it splits the original problem into smaller ones
where each classifier will act. So, we apply a genetic algorithm to find effective values
of the LS-SVM parameters and also to find a weight vector, measuring the importance
of each machine in the final classification. Finally, the final classification is obtained by
a linear combination of the decision values of the LS-SVMs with the weight vector. We
used several classification problems, taken as benchmarks to evaluate the performance of
the algorithm and compared the results with other classifiers | |
dc.publisher | Universidade Federal do Rio Grande do Norte | |
dc.publisher | BR | |
dc.publisher | UFRN | |
dc.publisher | Programa de Pós-Graduação em Engenharia Elétrica | |
dc.publisher | Automação e Sistemas; Engenharia de Computação; Telecomunicações | |
dc.rights | Acesso Aberto | |
dc.subject | Classificação de padrões. Máquinas de vetor de suporte por mínimos quadrados. Comitês de máquinas. Algoritmos genéticos | |
dc.subject | Pattern classification. Least squares support vector machines. Ensembles. Genetic algorithms | |
dc.title | Algoritmos genéticos aplicados a um comitê de LS-SVM em problemas de classificação | |
dc.type | masterThesis | |