dc.contributorDória Neto, Adrião Duarte
dc.contributor
dc.contributorhttp://lattes.cnpq.br/3020236775004881
dc.contributor
dc.contributorhttp://lattes.cnpq.br/1987295209521433
dc.contributorCanuto, Anne Magaly de Paula
dc.contributor
dc.contributorhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4790093J8
dc.contributorMelo, Jorge Dantas de
dc.contributor
dc.contributorhttp://lattes.cnpq.br/7325007451912598
dc.contributorLudermir, Teresa Bernarda
dc.contributor
dc.contributorhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4781122D6
dc.creatorPadilha, Carlos Alberto de Araújo
dc.date.accessioned2013-08-20
dc.date.accessioned2014-12-17T14:56:13Z
dc.date.accessioned2022-10-06T12:40:31Z
dc.date.available2013-08-20
dc.date.available2014-12-17T14:56:13Z
dc.date.available2022-10-06T12:40:31Z
dc.date.created2013-08-20
dc.date.created2014-12-17T14:56:13Z
dc.date.issued2013-01-31
dc.identifierPADILHA, Carlos Alberto de Araújo. Algoritmos genéticos aplicados a um comitê de LS-SVM em problemas de classificação. 2013. 69 f. Dissertação (Mestrado em Automação e Sistemas; Engenharia de Computação; Telecomunicações) - Universidade Federal do Rio Grande do Norte, Natal, 2013.
dc.identifierhttps://repositorio.ufrn.br/jspui/handle/123456789/15472
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3956954
dc.description.abstractThe pattern classification is one of the machine learning subareas that has the most outstanding. Among the various approaches to solve pattern classification problems, the Support Vector Machines (SVM) receive great emphasis, due to its ease of use and good generalization performance. The Least Squares formulation of SVM (LS-SVM) finds the solution by solving a set of linear equations instead of quadratic programming implemented in SVM. The LS-SVMs provide some free parameters that have to be correctly chosen to achieve satisfactory results in a given task. Despite the LS-SVMs having high performance, lots of tools have been developed to improve them, mainly the development of new classifying methods and the employment of ensembles, in other words, a combination of several classifiers. In this work, our proposal is to use an ensemble and a Genetic Algorithm (GA), search algorithm based on the evolution of species, to enhance the LSSVM classification. In the construction of this ensemble, we use a random selection of attributes of the original problem, which it splits the original problem into smaller ones where each classifier will act. So, we apply a genetic algorithm to find effective values of the LS-SVM parameters and also to find a weight vector, measuring the importance of each machine in the final classification. Finally, the final classification is obtained by a linear combination of the decision values of the LS-SVMs with the weight vector. We used several classification problems, taken as benchmarks to evaluate the performance of the algorithm and compared the results with other classifiers
dc.publisherUniversidade Federal do Rio Grande do Norte
dc.publisherBR
dc.publisherUFRN
dc.publisherPrograma de Pós-Graduação em Engenharia Elétrica
dc.publisherAutomação e Sistemas; Engenharia de Computação; Telecomunicações
dc.rightsAcesso Aberto
dc.subjectClassificação de padrões. Máquinas de vetor de suporte por mínimos quadrados. Comitês de máquinas. Algoritmos genéticos
dc.subjectPattern classification. Least squares support vector machines. Ensembles. Genetic algorithms
dc.titleAlgoritmos genéticos aplicados a um comitê de LS-SVM em problemas de classificação
dc.typemasterThesis


Este ítem pertenece a la siguiente institución