doctoralThesis
Comitês de Classificadores para o Reconhecimento Multibiométrico em Dados Biométricos Revogáveis
Fecha
2013-05-24Registro en:
PINTRO, Fernando. Comitês de Classificadores para o Reconhecimento Multibiométrico em Dados Biométricos Revogáveis. 2013. 213 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Rio Grande do Norte, Natal, 2013.
Autor
Pintro, Fernando
Resumen
This work discusses the application of techniques of ensembles in multimodal recognition
systems development in revocable biometrics. Biometric systems are the future
identification techniques and user access control and a proof of this is the constant increases
of such systems in current society. However, there is still much advancement to
be developed, mainly with regard to the accuracy, security and processing time of such
systems. In the search for developing more efficient techniques, the multimodal systems
and the use of revocable biometrics are promising, and can model many of the problems
involved in traditional biometric recognition. A multimodal system is characterized by
combining different techniques of biometric security and overcome many limitations, how:
failures in the extraction or processing the dataset. Among the various possibilities to
develop a multimodal system, the use of ensembles is a subject quite promising, motivated
by performance and flexibility that they are demonstrating over the years, in its many
applications. Givin emphasis in relation to safety, one of the biggest problems found is
that the biometrics is permanently related with the user and the fact of cannot be changed
if compromised. However, this problem has been solved by techniques known as revocable
biometrics, which consists of applying a transformation on the biometric data in order to
protect the unique characteristics, making its cancellation and replacement. In order to
contribute to this important subject, this work compares the performance of individual
classifiers methods, as well as the set of classifiers, in the context of the original data and
the biometric space transformed by different functions. Another factor to be highlighted
is the use of Genetic Algorithms (GA) in different parts of the systems, seeking to further
maximize their eficiency. One of the motivations of this development is to evaluate the
gain that maximized ensembles systems by different GA can bring to the data in the transformed
space. Another relevant factor is to generate revocable systems even more eficient
by combining two or more functions of transformations, demonstrating that is possible to
extract information of a similar standard through applying different transformation functions.
With all this, it is clear the importance of revocable biometrics, ensembles and
GA in the development of more eficient biometric systems, something that is increasingly
important in the present day