masterThesis
Gravitomagnetismo e o teste da sonda gravidade B
Fecha
2011-07-01Registro en:
SANTOS, Noélia Souza dos. Gravitomagnetismo e o teste da sonda
gravidade B. 2011. 77 f. Dissertação (Mestrado em Física da Matéria Condensada; Astrofísica e Cosmologia; Física da Ionosfera) - Universidade Federal do Rio Grande do Norte, Natal, 2011.
Autor
Santos, Noélia Souza dos
Resumen
The so-called gravitomagnetic field arised as an old conjecture that currents of
matter (no charges) would produce gravitational effects similar to those produced by electric
currents in electromagnetism. Hans Thirring in 1918, using the weak field approximation
to the Einsteins field equations, deduced that a slowly rotating massive shell drags
the inertial frames in the direction of its rotation. In the same year, Joseph Lense applied to
astronomy the calculations of Thirring. Later, that effect came to be known as the Lense-
Thirring effect. Along with the de Sitter effect, those phenomena were recently tested by a
gyroscope in orbit around the Earth, as proposed by George E. Pugh in 1959 and Leonard
I. Schiff in 1960. In this dissertation, we study the gravitational effects associated with the
rotation of massive bodies in the light of the Einsteins General Theory of Relativity. With
that finality, we develop the weak field approximation to General Relativity and obtain
the various associated gravitational effects: gravitomagnetic time-delay, de Sitter effect
(geodesic precession) and the Lense-Thirring effect (drag of inertial frames). We discus
the measures of the Lense-Thirring effect done by LAGEOS Satellite (Laser Geodynamics
Satellite) and the Gravity Probe B - GPB - mission. The GPB satellite was launched into
orbit around the Earth at an altitude of 642 km by NASA in 2004. Results presented in
May 2011 clearly show the existence of the Lense-Thirring effect- a drag of inertial frames
of 37:2 7:2 mas/year (mas = milliarcsec)- and de Sitter effect - a geodesic precession of
6; 601:8 18:3 mas/year- measured with an accuracy of 19 % and of 0.28 % respectively
(1 mas = 4:84810��9 radian). These results are in a good agreement with the General
Relativity predictions of 41 mas/year for the Lense-Thirring effect and 6,606.1 mas/year
for the de Sitter effect.