article
The coprime quantum chain
Registro en:
1742-5468
10.1088/1742-5468/aa5bb4
Autor
Mussardo, G
Giudici, G
Viti, Jacopo
Resumen
In this paper we introduce and study the coprime quantum chain, i.e. a strongly correlated quantum system defined in terms of the integer eigenvalues niof the occupation number operators at each site of a chain of
length M. The ni’s take value in the interval [2,q]and may be regarded as Sz eigenvalues in the spin representation j = (q − 2)/2. The distinctive interaction of the model is based on the coprimality matrix Φ: for the ferromagnetic case, this matrix assigns lower energy to configurations where occupation numbers
niand ni+1of neighbouring sites share a common divisor, while for the antiferromagnetic case it assigns a lower energy to configurations where niand ni+1are coprime. The coprime chain, both in the ferro and anti-ferromagnetic cases, may present an exponential number of ground states whose values can be exactly computed by means of graph theoretical tools. In the ferromagnetic case there are generally also frustration phenomena. A fine tuning of local operators may lift the exponential ground state degeneracy and, according
to which operators are switched on, the system may be driven into dierent classes of universality, among which the Ising or Potts universality class. The paper also contains an appendix by Don Zagier on the exact eigenvalues and eigenvectors of the coprimality matrix in the limit →∞