dc.contributorAloise, Daniel
dc.contributorhttp://lattes.cnpq.br/4085705523195613
dc.contributorhttp://lattes.cnpq.br/5093210888872414
dc.contributorFernandes, Marcelo Augusto Costa
dc.contributorhttp://lattes.cnpq.br/3475337353676349
dc.contributorRocha, Caroline Thennecy de Medeiros
dc.contributorhttp://lattes.cnpq.br/8358112426847555
dc.contributorCoelho, Leandro Callegari
dc.contributorhttp://lattes.cnpq.br/5085659938072564
dc.creatorSilva, Allyson Fernandes da Costa
dc.date.accessioned2017-11-08T00:21:06Z
dc.date.accessioned2022-10-06T12:27:12Z
dc.date.available2017-11-08T00:21:06Z
dc.date.available2022-10-06T12:27:12Z
dc.date.created2017-11-08T00:21:06Z
dc.date.issued2017-06-30
dc.identifierSILVA, Allyson Fernandes da Costa. Um algoritmo evolucionário para o problema dinâmico de localização de facilidades com capacidades modulares. 2017. 104f. Dissertação (Mestrado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2017.
dc.identifierhttps://repositorio.ufrn.br/jspui/handle/123456789/24220
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3952500
dc.description.abstractLocation problems aim to determine the best positions where facilities should be installed in order to meet existing demands. Due to its wide applicability, several characteristics have already been appended to the models to better represent real situations. One of them generalizes classical models to the case that location decisions should be taken periodically. Another allows models to deal with capacity sizing as a problem variable. The Dynamic Facility Location Problem with Modular Capacities unifies these and other characteristics present in location problems in a single and generalized model. This problem was recently formulated in literature where an exact approach was introduced and applied to instances of a case study in the context of the forestry sector. We present an alternative method to solve the same problem. The method chosen uses a Genetic Algorithm metaheuristic framework and hybridizes it with a Variable Neighborhood Descent routine with three neighborhoods adapted from others applied to location problems. Experiments attested the effectiveness of the hybrid metaheuristic developed in comparison to the use of those methods purely. Compared to the exact approach, the heuristic proved to be competent by finding solutions up to a gap of 0,02% to the global optimum in the majority of the instances tested.
dc.publisherBrasil
dc.publisherUFRN
dc.publisherPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
dc.rightsAcesso Aberto
dc.subjectLocalização dinâmica de facilidades
dc.subjectCapacidade modular
dc.subjectMetaheurística híbrida
dc.subjectAlgoritmo genético
dc.subjectVariable neighborhood search
dc.titleUm algoritmo evolucionário para o problema dinâmico de localização de facilidades com capacidades modulares
dc.typemasterThesis


Este ítem pertenece a la siguiente institución