dc.contributorLima, Kassio Michell Gomes de
dc.contributorhttp://lattes.cnpq.br/6928918856031880
dc.contributorMoraes, Edgar Perin
dc.contributorhttp://lattes.cnpq.br/0705932816454884
dc.contributorMenezes, Fabricio Gava
dc.contributorhttp://lattes.cnpq.br/2848745987784319
dc.contributorBruns, Roy Eduard
dc.creatorMorais, Camilo de Lelis Medeiros de
dc.date.accessioned2017-11-07T23:52:52Z
dc.date.accessioned2022-10-06T12:26:50Z
dc.date.available2017-11-07T23:52:52Z
dc.date.available2022-10-06T12:26:50Z
dc.date.created2017-11-07T23:52:52Z
dc.date.issued2017-09-29
dc.identifierMORAIS, Camilo de Lelis Medeiros de. Desenvolvimento de técnicas de classificação supervisionada para dados químicos multivariados. 2017. 95f. Dissertação (Mestrado em Química) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2017.
dc.identifierhttps://repositorio.ufrn.br/jspui/handle/123456789/24217
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3952381
dc.description.abstractThis dissertation is composed by a theoretical contribution about the development of supervised classification techniques for application using multivariate chemical data. For this, chemometric techniques based on quadratic discriminant analysis (QDA) and support vector machines (SVM) were built combined with principal component analysis (PCA), successive projections algorithm (SPA) and genetic algorithm (GA) for supervised classification using data reduction and feature selection. These techniques were employed in analyzing first-order data, composed by attenuated total reflectance Fourier transform infrared spectroscopy (ATRFTIR) and mass spectra obtained from liquid chromatography time of flight (LC/TOF) and surface-enhanced laser desorption/ionization time of flight (SELDI/TOF). ATR-FTIR data were used to differentiate two classes of fungus of Cryptococcus gene, whereas the mass spectra data was used to identify ovarian and prostate cancer in blood serum. In addition, new twodimensional discriminant analysis techniques based on principal component analysis linear discriminant analysis (2D-PCA-LDA), quadratic discriminant analysis (2D-PCA-QDA) and support vectors machine (2D-PCA-SVM) were developed for applications in second-order chemical data composed by excitation-emission matrices (EEM) molecular fluorescence of simulated and real samples. The results show that the developed techniques had better classification performance for both first and second-order data, with classification rates, sensitivity and specificity reaching values between 90 to 100%. Also, the developed twodimensional techniques had overall performance superior than traditional multivariate classification methods using unfolded data, showing its potential to other future analytical applications.
dc.publisherBrasil
dc.publisherUFRN
dc.publisherPROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA
dc.rightsAcesso Aberto
dc.subjectQuimiometria
dc.subjectClassificação supervisionada
dc.subjectAnálise multivariada
dc.titleDesenvolvimento de técnicas de classificação supervisionada para dados químicos multivariados
dc.typemasterThesis


Este ítem pertenece a la siguiente institución