doctoralThesis
Análise do comportamento mecânico de espumas cerâmicas a base de alumina obtidas pelo método da réplica
Fecha
2011-10-11Registro en:
RAMALHO, Eduardo Galvão. Análise do comportamento mecânico de espumas
cerâmicas a base de alumina obtidas pelo método da
réplica. 2011. 104 f. Tese (Doutorado em Tecnologia de Materiais; Projetos Mecânicos; Termociências) - Universidade Federal do Rio Grande do Norte, Natal, 2011.
Autor
Ramalho, Eduardo Galvão
Resumen
Ceramics with porous cellular structure, called ceramic foams, have a potential use in several
applications, such as: thermal insulation, catalyst supports, filters, and others. Among these
techniques to obtain porous ceramics the replication method is an important process. This
method consists of impregnation of a sponge (usually polymer) with ceramic slurry, followed
by a heat treatment, which will happen the decomposition of organic material and sintering
the ceramic material, resulting in a ceramic structure which is a replica of impregnated
sponge. Knowledge of the mechanical properties of these ceramics is important for these
materials can be used commercially. Gibson and Ashby developed a mathematical model to
describe the mechanical behavior of cellular solids. This model wasn´t for describing the
ceramics behavior produced by the replica method, because it doesn´t consider the defects
from this type of processing. In this study were researched mechanical behavior of porous
alumina ceramics obtained by the replica method and proposed modifications to the model of
Gibson and Ashby to accommodate this material. The polymer sponge used in processing was
characterized by thermogravimetric analysis and scanning electron microscopy. The materials
obtained after sintering were characterized by mechanical strength tests on 4-point bending
and compression, density and porosity and by scanning electron microscopy. From these
results it was evaluated the mechanical strength behavior compared to Gibson and Ashby
model for solid cellular structure and was proposed a correction of this model through a factor
related to struts integrity degree, which consider fissures present in the structure of these
materials besides defects geometry within the struts