dc.contributorAndrade, Bernardo Borba de
dc.contributor
dc.contributor
dc.contributorMorales, Fidel Ernesto Castro
dc.contributor
dc.contributorFernandez, Luz Milena Zea
dc.contributor
dc.contributorNascimento, Fernando Ferraz do
dc.contributor
dc.creatorSouza, Isaac Jales Costa
dc.date.accessioned2017-01-23T13:11:35Z
dc.date.accessioned2022-10-06T12:24:10Z
dc.date.available2017-01-23T13:11:35Z
dc.date.available2022-10-06T12:24:10Z
dc.date.created2017-01-23T13:11:35Z
dc.date.issued2016-01-28
dc.identifierSOUZA, Isaac Jales Costa. Estimação bayesiana no modelo potência normal bimodal assimétrico. 2016. 95f. Dissertação (Mestrado em Matemática Aplicada e Estatística) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2016.
dc.identifierhttps://repositorio.ufrn.br/jspui/handle/123456789/21722
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3951434
dc.description.abstractIn this paper it is presented a Bayesian approach to the bimodal power-normal (BPN) models and the bimodal asymmetric power-normal (BAPN). First, we present the BPN model, specifying its non-informative and informative parameter α (bimodality). We obtain the posterior distribution by MCMC method, whose feasibility of use we tested from a convergence diagnose. After that, We use different informative priors for α and we do a sensitivity analysis in order to evaluate the effect of hyperparameters variation on the posterior distribution. Also, it is performed a simulation to evaluate the performance of the Bayesian estimator using informative priors. We noted that the Bayesian method shows more satisfactory results when compared to the maximum likelihood method. It is performed an application with bimodal data. Finally, we introduce the linear regression model with BPN error. As for the BAPN model we also specify informative and uninformative priors for bimodality and asymmetry parameters. We do the MCMC Convergence Diagnostics, which is also used to obtain the posterior distribution. We do a sensitivity analysis, applying actual data in the model and we introducing the linear regression model with PNBA error.
dc.publisherBrasil
dc.publisherUFRN
dc.publisherPROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA APLICADA E ESTATÍSTICA
dc.rightsAcesso Aberto
dc.subjectAssimetria
dc.subjectBimodalidade
dc.subjectDIC
dc.subjectInferência bayesina
dc.subjectMCMC
dc.subjectPriori de Jeffreys
dc.titleEstimação bayesiana no modelo potência normal bimodal assimétrico
dc.typemasterThesis


Este ítem pertenece a la siguiente institución