dc.contributor | Fernandes, Marcelo Augusto Costa | |
dc.contributor | Coutinho, Maria Gracielly Fernandes | |
dc.contributor | Souza, Luisa Christina de | |
dc.creator | Dutra, Josélia Laís Galvão | |
dc.date.accessioned | 2022-02-23T12:49:23Z | |
dc.date.accessioned | 2022-10-06T12:23:46Z | |
dc.date.available | 2022-02-23T12:49:23Z | |
dc.date.available | 2022-10-06T12:23:46Z | |
dc.date.created | 2022-02-23T12:49:23Z | |
dc.date.issued | 2022-02-11 | |
dc.identifier | DUTRA, Josélia Laís Galvão. Aprendizagem profunda baseada em word embedding associada a técnicas de redução de dimensionalidade aplicada a análise de variantes do SARS-CoV-2. 2022. 70f. Trabalho de Conclusão de Curso (Graduação em Engenharia de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2022. | |
dc.identifier | https://repositorio.ufrn.br/handle/123456789/46205 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3951331 | |
dc.description.abstract | This work aims to develop a new proposal to identify and characterize variants associated
with the SARS-CoV-2 virus. The proposal uses deep learning based on word embedding
associated with unsupervised learning algorithms such as t-Distributed Stochastic Neighbor
Embedding (t-SNE) and Principal Component Analysis (PCA). The proposal allows to
visualize and characterize the behavior of the variants in the space of two and three
dimensions over time. The work presents results from samples of the SARS-CoV-2 virus
collected from January to June 2021 and clearly shows the continuous distancing of viral
samples due to mutations over time. Thus, the proposal allows the creation of a new
analysis tool associated with the emergence of new variants. | |
dc.publisher | Universidade Federal do Rio Grande do Norte | |
dc.publisher | Brasil | |
dc.publisher | UFRN | |
dc.publisher | Engenharia de Computação | |
dc.publisher | Departamento de Engenharia de Computação e Automação | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/br/ | |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Brazil | |
dc.subject | Word embedding | |
dc.subject | Aprendizado não supervisionado | |
dc.subject | Variantes SARSCoV- 2 | |
dc.subject | Unsupervised learning | |
dc.subject | SARS-CoV-2 Variants | |
dc.title | Aprendizagem profunda baseada em word embedding associada a técnicas de redução de dimensionalidade aplicada a análise de variantes do SARS-CoV-2 | |
dc.type | bachelorThesis | |