dc.contributorFernandes, Marcelo Augusto Costa
dc.contributorCoutinho, Maria Gracielly Fernandes
dc.contributorSouza, Luisa Christina de
dc.creatorDutra, Josélia Laís Galvão
dc.date.accessioned2022-02-23T12:49:23Z
dc.date.accessioned2022-10-06T12:23:46Z
dc.date.available2022-02-23T12:49:23Z
dc.date.available2022-10-06T12:23:46Z
dc.date.created2022-02-23T12:49:23Z
dc.date.issued2022-02-11
dc.identifierDUTRA, Josélia Laís Galvão. Aprendizagem profunda baseada em word embedding associada a técnicas de redução de dimensionalidade aplicada a análise de variantes do SARS-CoV-2. 2022. 70f. Trabalho de Conclusão de Curso (Graduação em Engenharia de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2022.
dc.identifierhttps://repositorio.ufrn.br/handle/123456789/46205
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3951331
dc.description.abstractThis work aims to develop a new proposal to identify and characterize variants associated with the SARS-CoV-2 virus. The proposal uses deep learning based on word embedding associated with unsupervised learning algorithms such as t-Distributed Stochastic Neighbor Embedding (t-SNE) and Principal Component Analysis (PCA). The proposal allows to visualize and characterize the behavior of the variants in the space of two and three dimensions over time. The work presents results from samples of the SARS-CoV-2 virus collected from January to June 2021 and clearly shows the continuous distancing of viral samples due to mutations over time. Thus, the proposal allows the creation of a new analysis tool associated with the emergence of new variants.
dc.publisherUniversidade Federal do Rio Grande do Norte
dc.publisherBrasil
dc.publisherUFRN
dc.publisherEngenharia de Computação
dc.publisherDepartamento de Engenharia de Computação e Automação
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/br/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil
dc.subjectWord embedding
dc.subjectAprendizado não supervisionado
dc.subjectVariantes SARSCoV- 2
dc.subjectUnsupervised learning
dc.subjectSARS-CoV-2 Variants
dc.titleAprendizagem profunda baseada em word embedding associada a técnicas de redução de dimensionalidade aplicada a análise de variantes do SARS-CoV-2
dc.typebachelorThesis


Este ítem pertenece a la siguiente institución