masterThesis
Ergodicidade em cadeias de Markov não-homogêneas e cadeias de Markov com transições raras
Date
2014-02-14Registration in:
NASCIMENTO, Antônio Marcos Batista do. Ergodicidade em cadeias de Markov não-homogêneas e cadeias de Markov com transições raras. 2014. 74 f. Dissertação (Mestrado em Probabilidade e Estatística; Modelagem Matemática) - Universidade Federal do Rio Grande do Norte, Natal, 2014.
Author
Nascimento, Antônio Marcos Batista do
Institutions
Abstract
The central objective of a study Non-Homogeneous Markov Chains is the concept
of weak and strong ergodicity. A chain is weak ergodic if the dependence on the
initial distribution vanishes with time, and it is strong ergodic if it is weak ergodic and
converges in distribution. Most theoretical results on strong ergodicity assume some
knowledge of the limit behavior of the stationary distributions. In this work, we collect
some general results on weak and strong ergodicity for chains with space enumerable
states, and also study the asymptotic behavior of the stationary distributions of a
particular type of Markov Chains with finite state space, called Markov Chains with
Rare Transitions
Related items
Showing items related by title, author, creator and subject.
-
Modelos Markovianos para Planes CSP de muestreo por aceptación
Cohen Jiménez, Jesús R; Mercado Caruso, Nohora Nubia; Pérez Oliveira, Harold; Crissien Borrero, Tito José; Coronado Hernández, Jairo Rafael -
H ∞ state feedback control of discrete-time Markov jump linear systems through linear matrix inequalities
Gonçalves, A. P C; Fioravanti, A. R.; Al-Radhawi, M. A.; Geromel, J. C. -
H ∞ state feedback control of discrete-time Markov jump linear systems through linear matrix inequalities
Universidade Estadual Paulista (Unesp); Institute National de Recherche en Informatique et en Automatique; University of Sharjah; Universidade Estadual de Campinas (UNICAMP) (2011-12-01)This paper addresses the H ∞ state-feedback control design problem of discretetime Markov jump linear systems. First, under the assumption that the Markov parameter is measured, the main contribution is on the LMI ...