dc.contributorCosta, José Alfredo Ferreira
dc.contributor
dc.contributor
dc.contributorAloise, Daniel
dc.contributor
dc.contributorSilva, Gutembergue Soares da
dc.contributor
dc.contributorAdeodato, Paulo Jorge Leitão
dc.contributor
dc.contributorMattozo, Teofilo Câmara
dc.contributor
dc.creatorPasa, Leandro Antonio
dc.date.accessioned2017-01-05T18:51:41Z
dc.date.accessioned2022-10-06T12:19:12Z
dc.date.available2017-01-05T18:51:41Z
dc.date.available2022-10-06T12:19:12Z
dc.date.created2017-01-05T18:51:41Z
dc.date.issued2016-02-19
dc.identifierPASA, Leandro Antonio. Contribuição ao estudo de fusão de mapas auto organizáveis de Kohonen com ponderação por meio de índices de validação de agrupamentos. 2016. 55f. Tese (Doutorado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2016.
dc.identifierhttps://repositorio.ufrn.br/jspui/handle/123456789/21570
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3949959
dc.description.abstractThe amount of collected and stored information is growing every day in several areas of knowledge and data mining techniques are applied to these datasets in order to extract useful knowledge. One or another algorithm, or the same algorithm with different attributes, can lead to different results due to the dataset diversity. To solve this problem, machines committees methods were developed. A machine committee is a set of neural networks working independently and the results are combined into a single output, achieving a better generalization. The purpose of this work is to develop a new method for Kohonen maps ensemble, where the maps fusion is weighted by cluster validation indices and is suitable for equal size maps fusion and for different size maps fusion. The proposed algorithm has been tested in multiple data sets from the UCI Machine Learning Repository and Fundamental Clustering Problems Suite. Computer simulations show the proposed method is able to reach encouraging results, obtaining raising performance compared with a single Kohonen map.
dc.publisherBrasil
dc.publisherUFRN
dc.publisherPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
dc.rightsAcesso Aberto
dc.subjectComitês de máquinas
dc.subjectMapas auto-organizáveis de Kohonen
dc.subjectÍndice de validação de agrupamentos
dc.titleContribuição ao estudo de fusão de mapas auto organizáveis de Kohonen com ponderação por meio de índices de validação de agrupamentos
dc.typedoctoralThesis


Este ítem pertenece a la siguiente institución