dc.contributorSousa, Maria Bernardete Cordeiro de
dc.contributor
dc.contributorhttp://lattes.cnpq.br/0946274743230243
dc.contributor
dc.contributorhttp://lattes.cnpq.br/8488760386226790
dc.contributorNunes, Emerson Arcoverde
dc.contributor
dc.contributorhttp://lattes.cnpq.br/6535963043198482
dc.contributorCavalcanti, José Rodolfo Lopes de Paiva
dc.contributor
dc.contributorhttp://lattes.cnpq.br/3433564869429006
dc.contributorMiguel, Mario André Leocadio
dc.contributor
dc.contributorhttp://lattes.cnpq.br/9973095281534917
dc.contributorGaldino, Melyssa Kellyane Cavalcanti
dc.contributor
dc.contributorhttp://lattes.cnpq.br/6286409609641742
dc.contributorRibeiro, Sidarta Tollendal Gomes
dc.contributor
dc.contributorhttp://lattes.cnpq.br/0649912135067700
dc.creatorRebouças, Gleidson Mendes
dc.date.accessioned2021-02-18T22:50:41Z
dc.date.accessioned2022-10-05T23:12:42Z
dc.date.available2021-02-18T22:50:41Z
dc.date.available2022-10-05T23:12:42Z
dc.date.created2021-02-18T22:50:41Z
dc.date.issued2020-01-23
dc.identifierREBOUÇAS, Gleidson Mendes. Diagnóstico diferencial baseado em variáveis autonômicas e estrutura do discurso entre transtornos neuropsiquiátricos utilizando aprendizagem de máquina. 2020. 127f. Tese (Doutorado em Neurociências) - Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal, 2020.
dc.identifierhttps://repositorio.ufrn.br/handle/123456789/31556
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3949386
dc.description.abstractThe study of the adaptive nature stress response shows the major participation of physiological mechanisms associated with the hypothalamic-pituitary-adrenal endocrine axis and the Autonomic Nervous System (ANS), in its sympathetic and parasympathetic divisions, as well as the immune system. Individuals with different neuropsychiatric disorders present signs and symptoms that suggest dysregulation of the ANS (dysautonomia) and the expression or form of oral speech. These occurrences are present in other disorders that are part of the psychophysiological spectrum that includes post-traumatic stress disorder (PTSD), anxiety disorder (AD) and obsessive-compulsive disorder (OCD). In this context, the objective of this study was to develop a diagnostic classification mathematical model for PTSD, based on the analysis of autonomic variables and discourse structure. We investigated 298 males aged 22 to 48 years allocated into four groups: PTSD (n = 76), AD (n = 77), OCD (n = 73) and Control (n = 72). The PCL-5, BAI and YBOCS questionnaires were used to obtain the psychometric data related respectively to PTSD, AD and OCD. The SpeechGraphs® software was used to analyze the representation of the word trajectory and to quantitatively characterize the speech complexification. An ECG signal (ADInstruments model PowerLab®) was used to analyze heart rate variability (HRV) and skin conductance (RGP). Machine learning techniques (Decision Tree and Naive Bayes) were employed to obtain the mathematical model. The model generated for PTSD classification based on HRV measurements presented accuracy of 92.3% (p <0.0001) and Kappa index of 89.7% with the generation of a decision algorithm using parasympathetic axis measurements (SDNN and RMSSD) and sympathetic (LF). The model generated for PTSD classification based on autonomic skin conductance (μS) measurements presented 96.6% accuracy (p <0.0001) and 95.4% Kappa index with the generation of a decision algorithm using measurements checked on the second one and 180 of the five-minute. The model generated for PTSD classification based on speech trajectory measurements presented accuracy of 80.9% (p <0.0001) and Kappa index of 71.4% with the generation of a decision algorithm using lexical diversity measures (Nodes), recurrence (RE, PE) and connectivity (LSC, LCC and L3). The classification in levels of severity of the disorder allowed the identification, by the k-means method, of 3 classes (degrees) of elevation for each variable. Models generated with autonomic measurements have better accuracy for PTSD classification and present the potential to be used as a more efficient method for diagnosis, future investigations into risk stratification, severity categorization and follow-up of the clinical evolution of this disorder.
dc.publisherUniversidade Federal do Rio Grande do Norte
dc.publisherBrasil
dc.publisherUFRN
dc.publisherPROGRAMA DE PÓS-GRADUAÇÃO EM NEUROCIÊNCIAS
dc.rightsAcesso Aberto
dc.subjectSistema nervoso autônomo
dc.subjectFala
dc.subjectModelos teóricos
dc.subjectTranstorno de estresse pós-traumático
dc.subjectTranstorno de ansiedade e transtorno obsessivo-compulsivo
dc.titleDiagnóstico diferencial baseado em variáveis autonômicas e estrutura do discurso entre transtornos neuropsiquiátricos utilizando aprendizagem de máquina
dc.typedoctoralThesis


Este ítem pertenece a la siguiente institución