dc.contributorMaitelli, André Laurindo
dc.contributor
dc.contributor
dc.contributorDorea, Carlos Eduardo Trabuco
dc.contributor
dc.contributorAraújo, Fábio Meneghetti Ugulino de
dc.contributor
dc.contributorSilva, Gilbert Azevedo da
dc.contributor
dc.contributorGabriel Filho, Oscar
dc.contributor
dc.creatorLopes, Kennedy Reurison
dc.date.accessioned2019-12-16T17:36:06Z
dc.date.accessioned2022-10-05T23:08:27Z
dc.date.available2019-12-16T17:36:06Z
dc.date.available2022-10-05T23:08:27Z
dc.date.created2019-12-16T17:36:06Z
dc.date.issued2019-05-24
dc.identifierLOPES, Kennedy Reurison. Sistema especialista para ambiente industrial baseado em regras com auto-aprendizagem. 2019. 91f. Tese (Doutorado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2019.
dc.identifierhttps://repositorio.ufrn.br/jspui/handle/123456789/28197
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3947812
dc.description.abstractThis work presents a methodology for knowledge acquisition and representation through automatic logic rules for an industrial plant. Initial knowledge of an industrial process can be gained through a specialist who interprets situations present in the plant and can describe what is happening. In this paper, we present a way to acquire statistical knowledge of the plant during the execution of its processes, using an online clustering method known as TEDA-Cloud, modified for performance increase. Knowledge representation is described through the manipulation of a neural network known as CILP (Connectionist Inductive Learning and Logic Programming) and a proper symbology is described to represent the logical variables taken from the process signals. The results show an efficiency in interpreting the rules and acceleration in the clustering process and classification of the standards that define the rules.
dc.publisherBrasil
dc.publisherUFRN
dc.publisherPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
dc.rightsAcesso Aberto
dc.subjectSistemas especialistas
dc.subjectAmbiente industrial
dc.subjectSistema de suporte à decisão
dc.subjectRegras auto-editáveis
dc.titleSistema especialista para ambiente industrial baseado em regras com auto-aprendizagem
dc.typedoctoralThesis


Este ítem pertenece a la siguiente institución