dc.contributor | Maitelli, André Laurindo | |
dc.contributor | | |
dc.contributor | | |
dc.contributor | Dorea, Carlos Eduardo Trabuco | |
dc.contributor | | |
dc.contributor | Araújo, Fábio Meneghetti Ugulino de | |
dc.contributor | | |
dc.contributor | Silva, Gilbert Azevedo da | |
dc.contributor | | |
dc.contributor | Gabriel Filho, Oscar | |
dc.contributor | | |
dc.creator | Lopes, Kennedy Reurison | |
dc.date.accessioned | 2019-12-16T17:36:06Z | |
dc.date.accessioned | 2022-10-05T23:08:27Z | |
dc.date.available | 2019-12-16T17:36:06Z | |
dc.date.available | 2022-10-05T23:08:27Z | |
dc.date.created | 2019-12-16T17:36:06Z | |
dc.date.issued | 2019-05-24 | |
dc.identifier | LOPES, Kennedy Reurison. Sistema especialista para ambiente industrial baseado em regras com auto-aprendizagem. 2019. 91f. Tese (Doutorado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2019. | |
dc.identifier | https://repositorio.ufrn.br/jspui/handle/123456789/28197 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3947812 | |
dc.description.abstract | This work presents a methodology for knowledge acquisition and representation through automatic logic rules for an industrial plant. Initial knowledge of an industrial
process can be gained through a specialist who interprets situations present in the plant
and can describe what is happening. In this paper, we present a way to acquire statistical knowledge of the plant during the execution of its processes, using an online clustering method known as TEDA-Cloud, modified for performance increase. Knowledge
representation is described through the manipulation of a neural network known as CILP
(Connectionist Inductive Learning and Logic Programming) and a proper symbology is
described to represent the logical variables taken from the process signals. The results
show an efficiency in interpreting the rules and acceleration in the clustering process and
classification of the standards that define the rules. | |
dc.publisher | Brasil | |
dc.publisher | UFRN | |
dc.publisher | PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO | |
dc.rights | Acesso Aberto | |
dc.subject | Sistemas especialistas | |
dc.subject | Ambiente industrial | |
dc.subject | Sistema de suporte à decisão | |
dc.subject | Regras auto-editáveis | |
dc.title | Sistema especialista para ambiente industrial baseado em regras com auto-aprendizagem | |
dc.type | doctoralThesis | |