dc.contributorCanuto, Anne Magaly De Paula
dc.contributor
dc.contributor
dc.contributorhttp://lattes.cnpq.br/1357887401899097
dc.contributorCarvalho, Bruno Motta De
dc.contributor
dc.contributorhttp://lattes.cnpq.br/0330924133337698
dc.contributorAraujo, Daniel Sabino Amorim De
dc.contributor
dc.contributorhttp://lattes.cnpq.br/4744754780165354
dc.contributorJunior, Joao Carlos Xavier
dc.contributor
dc.contributorhttp://lattes.cnpq.br/5088238300241110
dc.contributorTakahashi, Adriana
dc.contributor
dc.contributorhttp://lattes.cnpq.br/0669090533992993
dc.creatorDantas, Carine Azevedo
dc.date.accessioned2018-11-06T11:53:57Z
dc.date.accessioned2022-10-05T23:05:24Z
dc.date.available2018-11-06T11:53:57Z
dc.date.available2022-10-05T23:05:24Z
dc.date.created2018-11-06T11:53:57Z
dc.date.issued2017-02-10
dc.identifierDANTAS, Carine Azevedo. Seleção de atributos baseado em algoritmos de agrupamento para tarefas de classificação. 2017. 70f. Dissertação (Mestrado Em Sistemas E Computação) - Centro De Ciências Exatas E Da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2017.
dc.identifierhttps://repositorio.ufrn.br/jspui/handle/123456789/26092
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3946500
dc.description.abstractWith the increase of the size on the data sets used in classi cation systems, selecting the most relevant attribute has become one of the main tasks in pre-processing phase. In a dataset, it is expected that all attributes are relevant. However, this is not always veri ed. Selecting a set of attributes of more relevance aids decreasing the size of the data without a ecting the performance, or even increase it, this way achieving better results when used in the data classi cation. The existing features selection methods elect the best attributes in the data base as a whole, without considering the particularities of each instance. The Unsupervised-based Feature Selection, proposed method, selects the relevant attributes for each instance individually, using clustering algorithms to group them accordingly with their similarities. This work performs an experimental analysis of di erent clustering techniques applied to this new feature selection approach. The clustering algorithms k-Means, DBSCAN and Expectation-Maximization (EM) were used as selection methods. Anaysis are performed to verify which of these clustering algorithms best ts to this new Feature Selection approach. Thus, the contribution of this study is to present a new approach for attribute selection, through a Semidynamic and a Dynamic version, and determine which of the clustering methods performs better selection and get a better performance in the construction of more accurate classi ers.
dc.publisherBrasil
dc.publisherUFRN
dc.publisherPrograma de pós-graduação em sistemas e computação
dc.rightsAcesso Aberto
dc.subjectComitês de classificadores
dc.subjectSeleção de atributos
dc.subjectAlgoritmos de agrupamento
dc.titleSeleção de atributos baseado em algoritmos de agrupamento para tarefas de classificação
dc.typemasterThesis


Este ítem pertenece a la siguiente institución