dc.contributorSilva, Luciano Rodrigues da
dc.contributor
dc.contributorhttp://lattes.cnpq.br/6690809353338049
dc.contributor
dc.contributorhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783310Y1
dc.contributorMendes, Gabriel Alves
dc.contributor
dc.contributorhttp://lattes.cnpq.br/0040137813382875
dc.contributorAndrade Júnior, José Soares de
dc.contributor
dc.contributorhttp://lattes.cnpq.br/8711030043086711
dc.creatorNunes, Thiago Crisóstomo Carlos
dc.date.accessioned2013-04-19
dc.date.accessioned2014-12-17T15:15:01Z
dc.date.accessioned2022-10-05T23:05:02Z
dc.date.available2013-04-19
dc.date.available2014-12-17T15:15:01Z
dc.date.available2022-10-05T23:05:02Z
dc.date.created2013-04-19
dc.date.created2014-12-17T15:15:01Z
dc.date.issued2012-06-29
dc.identifierNUNES, Thiago Crisóstomo Carlos. Fraturas e caminhos ótimos na rede de Barabasi-Albert. 2012. 79 f. Dissertação (Mestrado em Física da Matéria Condensada; Astrofísica e Cosmologia; Física da Ionosfera) - Universidade Federal do Rio Grande do Norte, Natal, 2012.
dc.identifierhttps://repositorio.ufrn.br/jspui/handle/123456789/16636
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3946342
dc.description.abstractFollowing the study of Andrade et al. (2009) on regular square lattices, here we investigate the problem of optimal path cracks (OPC) in Complex Networks. In this problem we associate to each site a determined energy. The optimum path is defined as the one among all possible paths that crosses the system which has the minimum cost, namely the sum of the energies along the path. Once the optimum path is determined, at each step, one blocks its site with highest energy, and then a new optimal path is calculated. This procedure is repeated until there is a set of blocked sites forming a macroscopic fracture which connects the opposite sides of the system. The method is applied to a lattice of size L and the density of removed sites is computed. As observed in the work by Andrade et al. (2009), the fractured system studied here also presents different behaviors depending on the level of disorder, namely weak, moderated and strong disorder intensities. In the regime of weak and moderated disorder, while the density of removed sites in the system does not depend of the size L in the case of regular lattices, in the regime of high disorder the density becomes substantially dependent on L. We did the same type of study for Complex Networks. In this case, each new site is connected with m previous ones. As in the previous work, we observe that the density of removed sites presents a similar behavior. Moreover, a new result is obtained, i.e., we analyze the dependency of the disorder with the attachment parameter m
dc.publisherUniversidade Federal do Rio Grande do Norte
dc.publisherBR
dc.publisherUFRN
dc.publisherPrograma de Pós-Graduação em Física
dc.publisherFísica da Matéria Condensada; Astrofísica e Cosmologia; Física da Ionosfera
dc.rightsAcesso Aberto
dc.subjectRedes complexas. Caminhos Ótimos. Fraturas em caminhos ótimos
dc.subjectComplex network. Optimal path. Optimal path cracks
dc.titleFraturas e caminhos ótimos na rede de Barabasi-Albert
dc.typemasterThesis


Este ítem pertenece a la siguiente institución