dc.contributorCosta, José Alfredo Ferreira
dc.contributor
dc.contributorhttp://lattes.cnpq.br/7022849614714429
dc.contributor
dc.contributorhttp://lattes.cnpq.br/9745845064013172
dc.contributorMartins, Allan de Medeiros
dc.contributor
dc.contributorhttp://lattes.cnpq.br/4402694969508077
dc.contributorCarvalho, Bruno Motta de
dc.contributor
dc.contributorhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4791070J6
dc.creatorSouza, Jackson Gomes de
dc.date.accessioned2009-07-13
dc.date.accessioned2014-12-17T14:55:35Z
dc.date.accessioned2022-10-05T23:03:52Z
dc.date.available2009-07-13
dc.date.available2014-12-17T14:55:35Z
dc.date.available2022-10-05T23:03:52Z
dc.date.created2009-07-13
dc.date.created2014-12-17T14:55:35Z
dc.date.issued2009-09-28
dc.identifierSOUZA, Jackson Gomes de. Técnicas de computação natural para segmentação de imagens médicas. 2009. 105 f. Dissertação (Mestrado em Automação e Sistemas; Engenharia de Computação; Telecomunicações) - Universidade Federal do Rio Grande do Norte, Natal, 2009.
dc.identifierhttps://repositorio.ufrn.br/jspui/handle/123456789/15282
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3945834
dc.description.abstractImage segmentation is one of the image processing problems that deserves special attention from the scientific community. This work studies unsupervised methods to clustering and pattern recognition applicable to medical image segmentation. Natural Computing based methods have shown very attractive in such tasks and are studied here as a way to verify it's applicability in medical image segmentation. This work treats to implement the following methods: GKA (Genetic K-means Algorithm), GFCMA (Genetic FCM Algorithm), PSOKA (PSO and K-means based Clustering Algorithm) and PSOFCM (PSO and FCM based Clustering Algorithm). Besides, as a way to evaluate the results given by the algorithms, clustering validity indexes are used as quantitative measure. Visual and qualitative evaluations are realized also, mainly using data given by the BrainWeb brain simulator as ground truth
dc.publisherUniversidade Federal do Rio Grande do Norte
dc.publisherBR
dc.publisherUFRN
dc.publisherPrograma de Pós-Graduação em Engenharia Elétrica
dc.publisherAutomação e Sistemas; Engenharia de Computação; Telecomunicações
dc.rightsAcesso Aberto
dc.subjectProcessamento de imagens digitais
dc.subjectsegmentação de imagens médicas
dc.subjectotimização por enxame de partículas
dc.subjectcomputação natural
dc.subjectalgoritmos genéticos
dc.subjectk-means
dc.subjectfuzzy c-means
dc.subjectDigital image processing
dc.subjectmedical image segmentation
dc.subjectparticle swarm optimization
dc.subjectnatural computing
dc.subjectgenetic algorithms
dc.subjectk-means
dc.subjectfuzzy c-means
dc.titleTécnicas de computação natural para segmentação de imagens médicas
dc.typemasterThesis


Este ítem pertenece a la siguiente institución