dc.contributorGomes, Rafael Beserra
dc.contributor
dc.contributorhttp://lattes.cnpq.br/0470168287417678
dc.contributor
dc.contributorhttp://lattes.cnpq.br/5849107545126304
dc.contributorGonçalves, Luiz Marcos Garcia
dc.contributor
dc.contributorhttp://lattes.cnpq.br/1562357566810393
dc.contributorCarvalho, Bruno Motta de
dc.contributor
dc.contributorhttp://lattes.cnpq.br/0330924133337698
dc.contributorClua, Esteban Walter Gonzalez
dc.contributor
dc.contributorhttp://lattes.cnpq.br/4791589931798048
dc.contributorAlsina, Pablo Javier
dc.contributor
dc.contributorhttp://lattes.cnpq.br/3653597363789712
dc.contributorCésar Júnior, Roberto Marcondes
dc.contributor
dc.contributorhttp://lattes.cnpq.br/2240951178648368
dc.creatorMedeiros, Petrúcio Ricardo Tavares de
dc.date.accessioned2021-03-17T23:27:23Z
dc.date.accessioned2022-10-05T23:02:29Z
dc.date.available2021-03-17T23:27:23Z
dc.date.available2022-10-05T23:02:29Z
dc.date.created2021-03-17T23:27:23Z
dc.date.issued2020-10-30
dc.identifierMEDEIROS, Petrúcio Ricardo Tavares de. Detecção de estímulo visual usando múltiplas fóveas. 2020. 125f. Tese (Doutorado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2020.
dc.identifierhttps://repositorio.ufrn.br/handle/123456789/31931
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3945186
dc.description.abstractThe multifoveation technique allows to add several focus in the image, which can be explored as points of visual attention in contexts of object detection, identification and/or recognition. However, the use of multifoveation technique requires knowledge of the position of the visual stimuli. In this work we propose a new approach to detect visual stimuli using the structure of multiple foveas. For this, we use mathematical strategies adapted to the context of computer vision, which consider the distribution of the foveas to estimate the localization of the visual stimuli in the image. The mathematical strategies adopted were the gradient descent (potential field), maximum likelihood, multilateration, trilateration and barycentric coordinates. The results show that the algorithms converge to the position of the visual stimulus, with the exception of the intersection of potential locations algorithm due to sensitivity to local minimums. In addition, algorithms that use the potential field to require more processing time and computational resources compared to other strategies. However, it is possible to affirm that three foveas are enough to estimate the position of the visual stimulus in the image using the trilateration and barycentric coordinates algorithms. We conclude that the multifoveation associated with mathematical strategies can be applied in visual detection and converges with at least three foveas.
dc.publisherUniversidade Federal do Rio Grande do Norte
dc.publisherBrasil
dc.publisherUFRN
dc.publisherPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
dc.rightsAcesso Aberto
dc.subjectMultifoveamento
dc.subjectEstímulos visuais
dc.subjectDetecção visual
dc.subjectDescida do gradiente
dc.subjectMáximo verossimilhança
dc.subjectTrilateração e coordenadas baricêntricas
dc.titleDetecção de estímulo visual usando múltiplas fóveas
dc.typedoctoralThesis


Este ítem pertenece a la siguiente institución