dc.contributorCarvalho, Bruno Motta de
dc.contributor
dc.contributorhttp://lattes.cnpq.br/0990860702842858
dc.contributor
dc.contributorhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4791070J6
dc.contributorGomes, Herman Martins
dc.contributor
dc.contributorhttp://lattes.cnpq.br/4223020694433271
dc.contributorSantos, Selan Rodrigues dos
dc.contributor
dc.contributorhttp://lattes.cnpq.br/4022950700003347
dc.creatorSantos, Tiago Souza dos
dc.date.accessioned2013-04-22
dc.date.accessioned2014-12-17T15:48:04Z
dc.date.accessioned2022-10-05T23:01:41Z
dc.date.available2013-04-22
dc.date.available2014-12-17T15:48:04Z
dc.date.available2022-10-05T23:01:41Z
dc.date.created2013-04-22
dc.date.created2014-12-17T15:48:04Z
dc.date.issued2012-08-17
dc.identifierSANTOS, Tiago Souza dos. Segmentação Fuzzy de Texturas e Vídeos. 2012. 80 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Rio Grande do Norte, Natal, 2012.
dc.identifierhttps://repositorio.ufrn.br/jspui/handle/123456789/18063
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3944841
dc.description.abstractThe segmentation of an image aims to subdivide it into constituent regions or objects that have some relevant semantic content. This subdivision can also be applied to videos. However, in these cases, the objects appear in various frames that compose the videos. The task of segmenting an image becomes more complex when they are composed of objects that are defined by textural features, where the color information alone is not a good descriptor of the image. Fuzzy Segmentation is a region-growing segmentation algorithm that uses affinity functions in order to assign to each element in an image a grade of membership for each object (between 0 and 1). This work presents a modification of the Fuzzy Segmentation algorithm, for the purpose of improving the temporal and spatial complexity. The algorithm was adapted to segmenting color videos, treating them as 3D volume. In order to perform segmentation in videos, conventional color model or a hybrid model obtained by a method for choosing the best channels were used. The Fuzzy Segmentation algorithm was also applied to texture segmentation by using adaptive affinity functions defined for each object texture. Two types of affinity functions were used, one defined using the normal (or Gaussian) probability distribution and the other using the Skew Divergence. This latter, a Kullback-Leibler Divergence variation, is a measure of the difference between two probability distributions. Finally, the algorithm was tested in somes videos and also in texture mosaic images composed by images of the Brodatz album
dc.publisherUniversidade Federal do Rio Grande do Norte
dc.publisherBR
dc.publisherUFRN
dc.publisherPrograma de Pós-Graduação em Sistemas e Computação
dc.publisherCiência da Computação
dc.rightsAcesso Aberto
dc.subjectSegmentação de imagens. Segmentação de texturas. Segmentação de vídeos. Segmentação fuzzy. Modelos de cores. Divergência skew. Divergência de Kullback-Leibler
dc.subjectImage segmentation. Texture segmentation. Video segmentation. Fuzzy segmentation. Color model. Skew Divergence. Kullback-Leibler Divergence
dc.titleSegmentação Fuzzy de Texturas e Vídeos
dc.typemasterThesis


Este ítem pertenece a la siguiente institución