dc.contributorFlorencio, Heitor Medeiros
dc.contributorOliveira, Luiz Affonso Henderson Guedes de
dc.contributorMartins, Daniel Lopes
dc.contributorOliveira, Gisliany Lillian Alves de
dc.creatorAraújo Júnior, Sidnei
dc.date.accessioned2022-07-22T13:20:17Z
dc.date.accessioned2022-10-05T23:00:56Z
dc.date.available2022-07-22T13:20:17Z
dc.date.available2022-10-05T23:00:56Z
dc.date.created2022-07-22T13:20:17Z
dc.date.issued2022-07-15
dc.identifierARAÚJO JÚNIOR, Sidnei. Previsão de séries temporais de sensores de temperatura da empresa Nexxto. 2022. 41f. Trabalho de Conclusão de Curso (Graduação em Engenharia Mecatrônica) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2022.
dc.identifierhttps://repositorio.ufrn.br/handle/123456789/48646
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3944497
dc.description.abstractThe main objective of this work is to develop a time series forecasting model based on the temperature sensors data of the company Nexxto to provide a simulation for the company’s product development team. The Nexxto’s platform offers temperature sensor data monitoring, as well as reporting and alarming functions for healthcare customers. This work was developed using data analysis tools in Python programming language to perform processing and statistical analysis of sensor data. The treatment process prepared the data for the autoregressive integrated moving average (ARIMA) model implementation to predict sensor values. Analyzes were performed to define the forecasting model parameters based on the evaluation metrics. The company Nexxto already uses a sensor data simulation tool. However, using the model developed in this work allows simulating the real behavior of the sensors installed in customer environments. The model results showed errors below half a tenth of a degree Celsius and an acceptable runtime for the application.
dc.publisherUniversidade Federal do Rio Grande do Norte
dc.publisherBrasil
dc.publisherUFRN
dc.publisherEngenharia Mecatrônica
dc.publisherDepartamento de Engenharia de Computação e Automação
dc.rightshttp://creativecommons.org/licenses/by/3.0/br/
dc.rightsAttribution 3.0 Brazil
dc.subjectARIMA
dc.subjectSéries temporais
dc.subjectAnálise de dados
dc.subjectNexxto
dc.subjectPrevisão
dc.subjectTime series
dc.subjectData analytics
dc.subjectForecasting
dc.titlePrevisão de séries temporais de sensores de temperatura da empresa Nexxto
dc.typebachelorThesis


Este ítem pertenece a la siguiente institución