dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversity of Central Florida
dc.contributorKing Saud University
dc.date.accessioned2014-05-27T11:30:52Z
dc.date.accessioned2022-10-05T19:02:05Z
dc.date.available2014-05-27T11:30:52Z
dc.date.available2022-10-05T19:02:05Z
dc.date.created2014-05-27T11:30:52Z
dc.date.issued2013-11-01
dc.identifierJournal of Approximation Theory, v. 175, p. 64-76.
dc.identifier0021-9045
dc.identifier1096-0430
dc.identifierhttp://hdl.handle.net/11449/76897
dc.identifier10.1016/j.jat.2013.07.007
dc.identifierWOS:000325121000004
dc.identifier2-s2.0-84884360345
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3925766
dc.description.abstractWe investigate the mutual location of the zeros of two families of orthogonal polynomials. One of the families is orthogonal with respect to the measure dμ (x), supported on the interval (a, b) and the other with respect to the measure |x -c|τ|x -d|γdμ (x), where c and d are outside (a, b) We prove that the zeros of these polynomials, if they are of equal or consecutive degrees, interlace when either 0 < τ, γ ≤ 1 or γ = 0 and 0 < τ ≤ 2. This result is inspired by an open question of Richard Askey and it generalizes recent results on some families of orthogonal polynomials. Moreover, we obtain further statements on interlacing of zeros of specific orthogonal polynomials, such as the Askey-Wilson ones. © 2013 Elsevier Inc.
dc.languageeng
dc.relationJournal of Approximation Theory
dc.relation0.939
dc.relation0,907
dc.rightsAcesso restrito
dc.sourceScopus
dc.subjectClassical orthogonal polynomials
dc.subjectInterlacing
dc.subjectMonotonicity
dc.subjectOrthogonal polynomials
dc.subjectQ-orthogonal polynomials
dc.subjectZeros
dc.titleInterlacing of zeros of orthogonal polynomials under modification of the measure
dc.typeArtigo


Este ítem pertenece a la siguiente institución