dc.contributorLaboratório Nacional de Ciência e Tecnologia do Bioetanol - CTBE/CNPEM
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.contributorLaboratório Nacional de Biociências - LNBio/CNPEM
dc.date.accessioned2014-05-27T11:30:51Z
dc.date.accessioned2022-10-05T19:01:37Z
dc.date.available2014-05-27T11:30:51Z
dc.date.available2022-10-05T19:01:37Z
dc.date.created2014-05-27T11:30:51Z
dc.date.issued2013-10-14
dc.identifierBiochimica et Biophysica Acta - Proteins and Proteomics, v. 1834, n. 8, p. 1492-1500, 2013.
dc.identifier1570-9639
dc.identifier1878-1454
dc.identifierhttp://hdl.handle.net/11449/76833
dc.identifier10.1016/j.bbapap.2013.02.030
dc.identifierWOS:000321802200005
dc.identifier2-s2.0-84882256335
dc.identifier2-s2.0-84882256335.pdf
dc.identifier0500034174785796
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3925709
dc.description.abstractMultifunctional enzyme engineering can improve enzyme cocktails for emerging biofuel technology. Molecular dynamics through structure-based models (SB) is an effective tool for assessing the tridimensional arrangement of chimeric enzymes as well as for inferring the functional practicability before experimental validation. This study describes the computational design of a bifunctional xylanase-lichenase chimera (XylLich) using the xynA and bglS genes from Bacillus subtilis. In silico analysis of the average solvent accessible surface area (SAS) and the root mean square fluctuation (RMSF) predicted a fully functional chimera, with minor fluctuations and variations along the polypeptide chains. Afterwards, the chimeric enzyme was built by fusing the xynA and bglS genes. XylLich was evaluated through small-angle X-ray scattering (SAXS) experiments, resulting in scattering curves with a very accurate fit to the theoretical protein model. The chimera preserved the biochemical characteristics of the parental enzymes, with the exception of a slight variation in the temperature of operation and the catalytic efficiency (k cat/Km). The absence of substantial shifts in the catalytic mode of operation was also verified. Furthermore, the production of chimeric enzymes could be more profitable than producing a single enzyme separately, based on comparing the recombinant protein production yield and the hydrolytic activity achieved for XylLich with that of the parental enzymes. © 2013 Elsevier B.V. All rights reserved.
dc.languageeng
dc.relationBiochimica et Biophysica Acta: Proteins and Proteomics
dc.relation2.609
dc.relation1,170
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectComputational characterization
dc.subjectExperimental validation
dc.subjectMolecular dynamics
dc.subjectMultifunctional enzyme
dc.subjectSmall-angle X-ray scattering
dc.subjectendo 1,4 beta xylanase
dc.subjectglycosidase
dc.subjecthybrid protein
dc.subjectlicheninase
dc.subjectBacillus subtilis
dc.subjectchemical structure
dc.subjectchemistry
dc.subjectcomputer simulation
dc.subjectenzymology
dc.subjectgenetics
dc.subjectmetabolism
dc.subjectmolecular dynamics
dc.subjectsmall angle scattering
dc.subjectComputer Simulation
dc.subjectEndo-1,4-beta Xylanases
dc.subjectGlycoside Hydrolases
dc.subjectModels, Molecular
dc.subjectMolecular Dynamics Simulation
dc.subjectRecombinant Fusion Proteins
dc.subjectScattering, Small Angle
dc.titleAssembling a xylanase-lichenase chimera through all-atom molecular dynamics simulations
dc.typeArtigo


Este ítem pertenece a la siguiente institución