dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:30:41Z
dc.date.accessioned2022-10-05T18:59:13Z
dc.date.available2014-05-27T11:30:41Z
dc.date.available2022-10-05T18:59:13Z
dc.date.created2014-05-27T11:30:41Z
dc.date.issued2013-09-09
dc.identifierProceedings - IEEE International Symposium on Circuits and Systems, p. 974-977.
dc.identifier0271-4310
dc.identifierhttp://hdl.handle.net/11449/76536
dc.identifier10.1109/ISCAS.2013.6572011
dc.identifierWOS:000332006801056
dc.identifier2-s2.0-84883413426
dc.identifier6027713750942689
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3925420
dc.description.abstractIn this paper we propose a novel method for shape analysis called HTS (Hough Transform Statistics), which uses statistics from Hough Transform space in order to characterize the shape of objects in digital images. Experimental results showed that the HTS descriptor is robust and presents better accuracy than some traditional shape description methods. Furthermore, HTS algorithm has linear complexity, which is an important requirement for content based image retrieval from large databases. © 2013 IEEE.
dc.languageeng
dc.relationProceedings - IEEE International Symposium on Circuits and Systems
dc.relation0,237
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectContent based image retrieval
dc.subjectDigital image
dc.subjectLarge database
dc.subjectLinear complexity
dc.subjectShape analysis
dc.subjectShape description
dc.subjectShape descriptors
dc.subjectTransform statistics
dc.subjectHough transforms
dc.titleHTS: A new shape descriptor based on Hough Transform
dc.typeTrabalho apresentado em evento


Este ítem pertenece a la siguiente institución