dc.contributorQuaid-i-Azam University
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:30:35Z
dc.date.accessioned2022-10-05T18:58:39Z
dc.date.available2014-05-27T11:30:35Z
dc.date.available2022-10-05T18:58:39Z
dc.date.created2014-05-27T11:30:35Z
dc.date.issued2013-09-01
dc.identifierAnais da Academia Brasileira de Ciencias, v. 85, n. 3, p. 863-872, 2013.
dc.identifier0001-3765
dc.identifier1678-2690
dc.identifierhttp://hdl.handle.net/11449/76462
dc.identifier10.1590/S0001-37652013000300002
dc.identifierS0001-37652013000300002
dc.identifierS0001-37652013000300863
dc.identifierWOS:000324948400002
dc.identifier2-s2.0-84884235776
dc.identifier2-s2.0-84884235776.pdf
dc.identifier8940498347481982
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3925351
dc.description.abstractFor a given binary BCH code Cn of length n = 2s-1 generated by a polynomial g(x)e{open}F2[x] of degree r there is no binary BCH code of length (n + 1)n generated by a generalized polynomial g(x1/2)e{open}F2[x1/2ℤ ≥ 0] of degree 2r. However, it does exist a binary cyclic code C(n+1)n of length (n + 1)n such that the binary BCH code Cn is embedded in C(n+1)n. Accordingly a high code rate is attained through a binary cyclic code C(n+1)n for a binary BCH code Cn. Furthermore, an algorithm proposed facilitates in a decoding of a binary BCH code Cn through the decoding of a binary cyclic code C(n+1)n, while the codes Cn and C(n+1)n have the same minimum hamming distance.
dc.languageeng
dc.relationAnais da Academia Brasileira de Ciências
dc.relation0.956
dc.relation0,418
dc.relation0,418
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectBCH code
dc.subjectBinary cyclic code
dc.subjectBinary Hamming code
dc.subjectDecoding algorithm
dc.titleA decoding method of an n length binary BCH code through (n + 1)n length binary cyclic code
dc.typeArtigo


Este ítem pertenece a la siguiente institución