dc.contributorUniversidade Federal do ABC (UFABC)
dc.contributorUniversidade de São Paulo (USP)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:29:47Z
dc.date.accessioned2022-10-05T18:52:51Z
dc.date.available2014-05-27T11:29:47Z
dc.date.available2022-10-05T18:52:51Z
dc.date.created2014-05-27T11:29:47Z
dc.date.issued2013-06-24
dc.identifierApplied Catalysis A: General, v. 462-463, p. 256-261.
dc.identifier0926-860X
dc.identifierhttp://hdl.handle.net/11449/75702
dc.identifier10.1016/j.apcata.2013.04.008
dc.identifierWOS:000323018700030
dc.identifier2-s2.0-84879115426
dc.identifier6466841023506131
dc.identifier1792298807472521
dc.identifier0000-0002-3823-0050
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3924629
dc.description.abstractThis work studied the degradation of dipyrone, via electrochemical processes and via electro-Fenton reaction using a 4% CeO2/C gas diffusion electrode (GDE) prepared via modified polymeric precursor method. This material was used to electrochemically generate H2O2 through oxygen reduction. The mean crystallite sizes estimated by the Scherrer equation for 4% CeO2/C were 4 nm for CeO2-x (0 4 4) and 5 nm for CeO2 (1 1 1) while using transmission electron microscopy (TEM) the mean nanoparticle size was 5.4 nm. X-ray photoelectron spectroscopy (XPS) measurements revealed nearly equal concentrations of Ce(III) and Ce(IV) species on carbon, which contained high oxygenated acid species like CO and OCO. Electrochemical degradation using Vulcan XC 72R carbon showed that the dipyrone was not removed during the two hour electrolysis in all applied potentials by electro-degradation. Besides, when the Fenton process was employed the degradation was much similar when using cerium catalysts but the mineralization reaches just to 50% at -1.1 V. However, using the CeO2/C GDE, in 20 min all of the dipyrone was degraded with 26% mineralization at -1.3 V and when the Fenton process was employed, all of the dipyrone was removed after 5 min with 57% mineralization at -1.1 V. Relative to Vulcan XC72R, ceria acts as an oxygen buffer leading to an increase in the local oxygen concentration, facilitating H2O2 formation and consequently improving the dipyrone degradation © 2013 Elsevier B.V. All rights reserved.
dc.languageeng
dc.relationApplied Catalysis A: General
dc.relation4.521
dc.rightsAcesso restrito
dc.sourceScopus
dc.subjectCerium oxide nanoparticles
dc.subjectDipyrone degradation
dc.subjectGas diffusion electrode
dc.subjectH2O2 electrogeneration
dc.subjectAdvanced Oxidation Processes
dc.subjectCerium oxide nanoparticle
dc.subjectDipyrone
dc.subjectElectrochemical degradation
dc.subjectElectrogeneration
dc.subjectGas diffusion electrodes
dc.subjectNanostructured electrocatalysts
dc.subjectTransmission electron microscopy (TEM)
dc.subjectCarbon
dc.subjectCerium compounds
dc.subjectDiffusion in gases
dc.subjectElectrocatalysts
dc.subjectElectrolytic reduction
dc.subjectMineralogy
dc.subjectNanoparticles
dc.subjectOxygen
dc.subjectPhotoelectrons
dc.subjectTransmission electron microscopy
dc.subjectX ray photoelectron spectroscopy
dc.subjectCerium
dc.titleDegradation of dipyrone via advanced oxidation processes using a cerium nanostructured electrocatalyst material
dc.typeArtigo


Este ítem pertenece a la siguiente institución