dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:28:45Z
dc.date.accessioned2022-10-05T18:46:49Z
dc.date.available2014-05-27T11:28:45Z
dc.date.available2022-10-05T18:46:49Z
dc.date.created2014-05-27T11:28:45Z
dc.date.issued2013-04-01
dc.identifierProgress in Organic Coatings, v. 76, n. 4, p. 601-608, 2013.
dc.identifier0300-9440
dc.identifierhttp://hdl.handle.net/11449/74940
dc.identifier10.1016/j.porgcoat.2012.11.015
dc.identifierWOS:000316425000012
dc.identifier2-s2.0-84874106317
dc.identifier6466841023506131
dc.identifier9971202585286967
dc.identifier5584298681870865
dc.identifier0000-0002-3823-0050
dc.identifier0000-0002-8356-8093
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3923890
dc.description.abstractSiloxane-polymethyl methacrylate hybrid films containing functionalized multiwall carbon nanotubes (CNTs) were deposited by dip-coating on carbon steel substrates from a sol prepared by radical polymerization of methyl methacrylate and 3-methacryloxy propyl-trimethoxysilane, followed by hydrolytic co-polycondensation of tetraethoxysilane. The correlation between the structural properties and corrosion protection efficiency was studied as a function of the molar ratio of nanotubes carbon to silicon, varied in the range between 0.1% and 5%. 29Si nuclear magnetic resonance and thermogravimetric measurements have shown that hybrids containing carbon nanotubes have a similar degree of polycondensation and thermal stability as the undoped matrix and exhibit and excellent adhesion to the substrate. Microscopy and X-ray photoelectron spectroscopy results revealed a very good dispersion of carbon nanotubes in the hybrid matrix and the presence of carboxylic groups allowing covalent bonding with the end-siloxane nodes. Potentiodynamic polarization curves and electrochemical impedance spectroscopy results demonstrate that CNTs containing coatings maintain the excellent corrosion protection efficiency of the hybrids, showing even a superior performance in acidic solution. The nanocomposite structure acts as efficient corrosion barrier, increasing the total impedance by 4 orders of magnitude and reducing the current densities by more than 3 orders of magnitude, compared to the bare steel electrode. © 2013 Elsevier B.V. All rights reserved.
dc.languageeng
dc.relationProgress in Organic Coatings
dc.relation2.955
dc.relation0,844
dc.rightsAcesso restrito
dc.sourceScopus
dc.subjectCarbon nanotubes
dc.subjectCorrosion protection
dc.subjectElectrochemical properties
dc.subjectHybrid coatings
dc.subjectPhotoelectron spectroscopy
dc.subjectSol-gel process
dc.subjectAcidic solutions
dc.subjectBare steel
dc.subjectCarbon steel substrates
dc.subjectCarboxylic group
dc.subjectCorrosion barriers
dc.subjectCovalent bonding
dc.subjectDip coating
dc.subjectFunctionalized
dc.subjectHybrid coating
dc.subjectHybrid film
dc.subjectHybrid matrix
dc.subjectMolar ratio
dc.subjectNano-composite structure
dc.subjectOrders of magnitude
dc.subjectPolymerization of methyl methacrylate
dc.subjectPotentiodynamic polarization curves
dc.subjectProtection efficiency
dc.subjectSimilar degree
dc.subjectThermogravimetric measurement
dc.subjectCarbon steel
dc.subjectCoatings
dc.subjectCorrosion resistance
dc.subjectElectrochemical impedance spectroscopy
dc.subjectEsters
dc.subjectPhotoelectrons
dc.subjectPolycondensation
dc.subjectPolymethyl methacrylates
dc.subjectSols
dc.subjectSubstrates
dc.subjectX ray photoelectron spectroscopy
dc.titleCarbon nanotube-reinforced siloxane-PMMA hybrid coatings with high corrosion resistance
dc.typeArtigo


Este ítem pertenece a la siguiente institución