dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Federal de Uberlândia (UFU)
dc.contributorUniversidade Federal Fluminense (UFF)
dc.contributorUniversidade de São Paulo (USP)
dc.date.accessioned2014-05-27T11:28:38Z
dc.date.accessioned2022-10-05T18:45:38Z
dc.date.available2014-05-27T11:28:38Z
dc.date.available2022-10-05T18:45:38Z
dc.date.created2014-05-27T11:28:38Z
dc.date.issued2013-03-05
dc.identifierPhysical Review B - Condensed Matter and Materials Physics, v. 87, n. 12, 2013.
dc.identifier1098-0121
dc.identifier1550-235X
dc.identifierhttp://hdl.handle.net/11449/74799
dc.identifier10.1103/PhysRevB.87.125104
dc.identifierWOS:000315733200002
dc.identifier2-s2.0-84874820607
dc.identifier2-s2.0-84874820607.pdf
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3923750
dc.description.abstractWe theoretically investigate the local density of states (LDOS) probed by an STM tip of ferromagnetic metals hosting a single adatom and a subsurface impurity. We model the system via the two-impurity Anderson Hamiltonian. By using the equation of motion with the relevant Green's functions, we derive analytical expressions for the LDOS of two host types: a surface and a quantum wire. The LDOS reveals Friedel-like oscillations and Fano interference as a function of the STM tip position. These oscillations strongly depend on the host dimension. Interestingly, we find that the spin-dependent Fermi wave numbers of the hosts give rise to spin-polarized quantum beats in the LDOS. Although the LDOS for the metallic surface shows a damped beating pattern, it exhibits the opposite behavior in the quantum wire. Due to this absence of damping, the wire operates as a spatially resolved spin filter with a high efficiency. © 2013 American Physical Society.
dc.languageeng
dc.relationPhysical Review B: Condensed Matter and Materials Physics
dc.relation1,604
dc.rightsAcesso restrito
dc.sourceScopus
dc.titleDimensionality effects in the local density of states of ferromagnetic hosts probed via STM: Spin-polarized quantum beats and spin filtering
dc.typeArtigo


Este ítem pertenece a la siguiente institución