Trabalho apresentado em evento
Improving image classification through descriptor combination
Fecha
2012-12-01Registro en:
Brazilian Symposium of Computer Graphic and Image Processing, p. 324-329.
1530-1834
10.1109/SIBGRAPI.2012.52
2-s2.0-84872385646
9039182932747194
Autor
Universidade Estadual Paulista (Unesp)
Universidade Estadual de Campinas (UNICAMP)
Resumen
The efficiency in image classification tasks can be improved using combined information provided by several sources, such as shape, color, and texture visual properties. Although many works proposed to combine different feature vectors, we model the descriptor combination as an optimization problem to be addressed by evolutionary-based techniques, which compute distances between samples that maximize their separability in the feature space. The robustness of the proposed technique is assessed by the Optimum-Path Forest classifier. Experiments showed that the proposed methodology can outperform individual information provided by single descriptors in well-known public datasets. © 2012 IEEE.