dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade de São Paulo (USP)
dc.date.accessioned2014-05-27T11:27:16Z
dc.date.accessioned2022-10-05T18:37:45Z
dc.date.available2014-05-27T11:27:16Z
dc.date.available2022-10-05T18:37:45Z
dc.date.created2014-05-27T11:27:16Z
dc.date.issued2012-12-01
dc.identifierQualitative Theory of Dynamical Systems, v. 11, n. 2, p. 231-275, 2012.
dc.identifier1575-5460
dc.identifier1662-3592
dc.identifierhttp://hdl.handle.net/11449/73786
dc.identifier10.1007/s12346-011-0058-5
dc.identifier2-s2.0-84874214857
dc.identifier7578944173575239
dc.identifier7578944173575239
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3922764
dc.description.abstractMotivated by return maps near saddles for three-dimensional flows and also by return maps in the torus associated to Cherry flows, we study gap maps with derivative positive and smaller than one outside the discontinuity point. We prove that the lamination of infinitely renormalizable maps (or else maps with irrational rotation numbers) has analytic leaves in a natural subset of a Banach space of analytic maps of this kind. With maps having Hölder continuous derivative and derivative bounded away from zero, we also prove Hölder continuity of holonomies of the lamination and also of conjugacies between maps having the same combinatorics. © 2011 Springer Basel AG.
dc.languageeng
dc.relationQualitative Theory of Dynamical Systems
dc.relation1.019
dc.relation0,492
dc.rightsAcesso restrito
dc.sourceScopus
dc.subjectCherry flow
dc.subjectCherry map
dc.subjectConjugacy
dc.subjectFlows on surfaces
dc.subjectGap map
dc.subjectHolonomy map
dc.subjectIrrational rotation number
dc.subjectLorenz map
dc.subjectRenormalization
dc.titleThe Lamination of Infinitely Renormalizable Dissipative Gap Maps: Analyticity, Holonomies and Conjugacies
dc.typeArtigo


Este ítem pertenece a la siguiente institución