dc.contributorUniversidade de São Paulo (USP)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:26:58Z
dc.date.accessioned2022-10-05T18:35:58Z
dc.date.available2014-05-27T11:26:58Z
dc.date.available2022-10-05T18:35:58Z
dc.date.created2014-05-27T11:26:58Z
dc.date.issued2012-09-03
dc.identifierIntelligent Decision Technologies, v. 6, n. 1, p. 43-58, 2012.
dc.identifier1872-4981
dc.identifier1875-8843
dc.identifierhttp://hdl.handle.net/11449/73556
dc.identifier10.3233/IDT-2012-0121
dc.identifier2-s2.0-84865456636
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3922551
dc.description.abstractOne way to organize knowledge and make its search and retrieval easier is to create a structural representation divided by hierarchically related topics. Once this structure is built, it is necessary to find labels for each of the obtained clusters. In many cases the labels must be built using all the terms in the documents of the collection. This paper presents the SeCLAR method, which explores the use of association rules in the selection of good candidates for labels of hierarchical document clusters. The purpose of this method is to select a subset of terms by exploring the relationship among the terms of each document. Thus, these candidates can be processed by a classical method to generate the labels. An experimental study demonstrates the potential of the proposed approach to improve the precision and recall of labels obtained by classical methods only considering the terms which are potentially more discriminative. © 2012 - IOS Press and the authors. All rights reserved.
dc.languageeng
dc.relationIntelligent Decision Technologies
dc.relation0,169
dc.rightsAcesso restrito
dc.sourceScopus
dc.subjectassociation rules
dc.subjectLabeling hierarchical clustering
dc.subjecttext mining
dc.subjectClassical methods
dc.subjectExperimental studies
dc.subjectHier-archical clustering
dc.subjectHierarchical document
dc.subjectPrecision and recall
dc.subjectSearch and retrieval
dc.subjectStructural representation
dc.subjectText mining
dc.subjectData mining
dc.subjectAssociation rules
dc.titleImproving hierarchical document cluster labels through candidate term selection
dc.typeArtigo


Este ítem pertenece a la siguiente institución