dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:25:52Z
dc.date.accessioned2022-10-05T18:26:40Z
dc.date.available2014-05-27T11:25:52Z
dc.date.available2022-10-05T18:26:40Z
dc.date.created2014-05-27T11:25:52Z
dc.date.issued2011-05-01
dc.identifierControle y Automacao, v. 22, n. 3, p. 273-283, 2011.
dc.identifier0103-1759
dc.identifierhttp://hdl.handle.net/11449/72407
dc.identifier10.1590/S0103-17592011000300005
dc.identifierS0103-17592011000300005
dc.identifier2-s2.0-80051532825
dc.identifier2-s2.0-80051532825.pdf
dc.identifier8755160580142626
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3921473
dc.description.abstractIn some practical problems, for instance, in the suppression of vibration in mechanical systems, the state-derivative signals are easier to obtain than the state signals. Thus, a method for state-derivative feedback design applied to uncertain nonlinear systems is proposed in this work. The nonlinear systems are represented by Takagi-Sugeno fuzzy models during the modeling of the problem, allowing to use Linear Matrix Inequalities (LMIs) in the controller design. This type of modeling ease the control design, because, LMIs are easily solved using convex programming technicals. The control design aimed at system stabilisation, with or without bounds on decay rate. The efficiency of design procedure is illustrated through a numerical example.
dc.languagepor
dc.relationControle y Automacao
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectFuzzy T-S Models
dc.subjectLinear Matrix Inequalities (LMIs)
dc.subjectParametric Uncertainties
dc.subjectState-Derivative Feedback
dc.subjectControl design
dc.subjectController designs
dc.subjectConvex programming
dc.subjectDecay rate
dc.subjectDesign procedure
dc.subjectFuzzy TS model
dc.subjectMechanical systems
dc.subjectNumerical example
dc.subjectParametric uncertainties
dc.subjectPractical problems
dc.subjectT S fuzzy system
dc.subjectTakagi Sugeno fuzzy models
dc.subjectUncertain nonlinear systems
dc.subjectControllers
dc.subjectDecay (organic)
dc.subjectDesign
dc.subjectFuzzy systems
dc.subjectLinear matrix inequalities
dc.subjectNonlinear feedback
dc.subjectNonlinear systems
dc.subjectStabilization
dc.subjectVibrations (mechanical)
dc.subjectState feedback
dc.titleEstabilização de sistemas fuzzy T-S incertos usando realimenta̧ão derivativa
dc.typeArtigo


Este ítem pertenece a la siguiente institución