dc.contributor | Universidade Federal de Uberlândia (UFU) | |
dc.contributor | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2014-05-27T11:22:37Z | |
dc.date.accessioned | 2022-10-05T18:08:56Z | |
dc.date.available | 2014-05-27T11:22:37Z | |
dc.date.available | 2022-10-05T18:08:56Z | |
dc.date.created | 2014-05-27T11:22:37Z | |
dc.date.issued | 2007-11-01 | |
dc.identifier | Zeitschrift fur Angewandte Mathematik und Physik, v. 58, n. 6, p. 940-958, 2007. | |
dc.identifier | 0044-2275 | |
dc.identifier | http://hdl.handle.net/11449/69945 | |
dc.identifier | 10.1007/s00033-006-5116-5 | |
dc.identifier | 2-s2.0-46649107309 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3919311 | |
dc.description.abstract | In this work, motivated by non-ideal mechanical systems, we investigate the following O.D.E. ẋ = f (x) + εg (x, t) + ε2g (x, t, ε), where x ∈ Ω ⊂ ℝn, g, g are T periodic functions of t and there is a 0 ∈ Ω such that f (a 0) = 0 and f′ (a0) is a nilpotent matrix. When n = 3 and f (x) = (0, q (x 3) , 0) we get results on existence and stability of periodic orbits. We apply these results in a non ideal mechanical system: the Centrifugal Vibrator. We make a stability analysis of this dynamical system and get a characterization of the Sommerfeld Effect as a bifurcation of periodic orbits. © 2007 Birkhäuser Verlag, Basel. | |
dc.language | eng | |
dc.relation | Zeitschrift fur Angewandte Mathematik und Physik | |
dc.relation | 1.711 | |
dc.relation | 0,828 | |
dc.rights | Acesso restrito | |
dc.source | Scopus | |
dc.subject | Bifurcation | |
dc.subject | Periodic orbits | |
dc.subject | Regular perturbation theory | |
dc.subject | Sommerfeld effect | |
dc.subject | Stability | |
dc.title | On the existence and stability of periodic orbits in non ideal problems: General results | |
dc.type | Artigo | |