dc.contributorUniversidade Federal de Uberlândia (UFU)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:22:37Z
dc.date.accessioned2022-10-05T18:08:56Z
dc.date.available2014-05-27T11:22:37Z
dc.date.available2022-10-05T18:08:56Z
dc.date.created2014-05-27T11:22:37Z
dc.date.issued2007-11-01
dc.identifierZeitschrift fur Angewandte Mathematik und Physik, v. 58, n. 6, p. 940-958, 2007.
dc.identifier0044-2275
dc.identifierhttp://hdl.handle.net/11449/69945
dc.identifier10.1007/s00033-006-5116-5
dc.identifier2-s2.0-46649107309
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3919311
dc.description.abstractIn this work, motivated by non-ideal mechanical systems, we investigate the following O.D.E. ẋ = f (x) + εg (x, t) + ε2g (x, t, ε), where x ∈ Ω ⊂ ℝn, g, g are T periodic functions of t and there is a 0 ∈ Ω such that f (a 0) = 0 and f′ (a0) is a nilpotent matrix. When n = 3 and f (x) = (0, q (x 3) , 0) we get results on existence and stability of periodic orbits. We apply these results in a non ideal mechanical system: the Centrifugal Vibrator. We make a stability analysis of this dynamical system and get a characterization of the Sommerfeld Effect as a bifurcation of periodic orbits. © 2007 Birkhäuser Verlag, Basel.
dc.languageeng
dc.relationZeitschrift fur Angewandte Mathematik und Physik
dc.relation1.711
dc.relation0,828
dc.rightsAcesso restrito
dc.sourceScopus
dc.subjectBifurcation
dc.subjectPeriodic orbits
dc.subjectRegular perturbation theory
dc.subjectSommerfeld effect
dc.subjectStability
dc.titleOn the existence and stability of periodic orbits in non ideal problems: General results
dc.typeArtigo


Este ítem pertenece a la siguiente institución