dc.contributorInstituto Nacional de Pesquisas Espaciais (INPE)
dc.contributorNASA Ames Research Center
dc.contributorUSDA Forest Service
dc.contributorMax Planck Institute for Chemistry
dc.contributorUW-Madison Cooperative Institute for Meteorological Satellite Studies
dc.contributorUniversidade de São Paulo (USP)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:22:33Z
dc.date.accessioned2022-10-05T18:08:03Z
dc.date.available2014-05-27T11:22:33Z
dc.date.available2022-10-05T18:08:03Z
dc.date.created2014-05-27T11:22:33Z
dc.date.issued2007-08-03
dc.identifierAtmospheric Chemistry and Physics, v. 7, n. 13, p. 3385-3398, 2007.
dc.identifier1680-7316
dc.identifier1680-7324
dc.identifierhttp://hdl.handle.net/11449/69815
dc.identifier10.5194/acp-7-3385-2007
dc.identifierWOS:000248733000001
dc.identifier2-s2.0-34547462179
dc.identifier2-s2.0-34547462179.pdf
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3919200
dc.description.abstractWe describe and begin to evaluate a parameterization to include the vertical transport of hot gases and particles emitted from biomass burning in low resolution atmospheric-chemistry transport models. This sub-grid transport mechanism is simulated by embedding a 1-D cloud-resolving model with appropriate lower boundary conditions in each column of the 3-D host model. Through assimilation of remote sensing fire products, we recognize which columns have fires. Using a land use dataset appropriate fire properties are selected. The host model provides the environmental conditions, allowing the plume rise to be simulated explicitly. The derived height of the plume is then used in the source emission field of the host model to determine the effective injection height, releasing the material emitted during the flaming phase at this height. Model results are compared with CO aircraft profiles from an Amazon basin field campaign and with satellite data, showing the huge impact that this mechanism has on model performance. We also show the relative role of each main vertical transport mechanisms, shallow and deep moist convection and the pyro-convection (dry or moist) induced by vegetation fires, on the distribution of biomass burning CO emissions in the troposphere.
dc.languageeng
dc.relationAtmospheric Chemistry and Physics
dc.relation5.509
dc.relation3,032
dc.relation3,032
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectairborne survey
dc.subjectatmospheric chemistry
dc.subjectatmospheric modeling
dc.subjectatmospheric plume
dc.subjectatmospheric transport
dc.subjectbiomass burning
dc.subjectcarbon monoxide
dc.subjectmodel validation
dc.subjectone-dimensional modeling
dc.subjectsatellite data
dc.subjectthree-dimensional modeling
dc.subjecttroposphere
dc.subjectvegetation
dc.subjectvertical distribution
dc.subjectwildfire
dc.subjectAmazon Basin
dc.subjectSouth America
dc.titleIncluding the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models
dc.typeArtigo


Este ítem pertenece a la siguiente institución