dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:21:41Z
dc.date.accessioned2022-10-05T17:58:29Z
dc.date.available2014-05-27T11:21:41Z
dc.date.available2022-10-05T17:58:29Z
dc.date.created2014-05-27T11:21:41Z
dc.date.issued2005-12-01
dc.identifierLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 3804 LNCS, p. 355-362.
dc.identifier0302-9743
dc.identifier1611-3349
dc.identifierhttp://hdl.handle.net/11449/68504
dc.identifier10.1007/11595755_43
dc.identifierWOS:000234830800043
dc.identifier2-s2.0-33744808549
dc.identifier6027713750942689
dc.identifier8163849451440263
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3918037
dc.description.abstractThis paper presents a technique for real-time crowd density estimation based on textures of crowd images. In this technique, the current image from a sequence of input images is classified into a crowd density class. Then, the classification is corrected by a low-pass filter based on the crowd density classification of the last n images of the input sequence. The technique obtained 73.89% of correct classification in a real-time application on a sequence of 9892 crowd images. Distributed processing was used in order to obtain real-time performance. © Springer-Verlag Berlin Heidelberg 2005.
dc.languageeng
dc.relationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.relation0,295
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectClassification (of information)
dc.subjectDistributed computer systems
dc.subjectImage processing
dc.subjectLow pass filters
dc.subjectReal time systems
dc.subjectCrowd density estimation
dc.subjectInput sequence
dc.subjectReal-time performance
dc.subjectParameter estimation
dc.titleReal-time crowd density estimation using images
dc.typeTrabalho apresentado em evento


Este ítem pertenece a la siguiente institución